Modulhandbuch

Bachelor of Engineering
Elektrotechnik und Informationstechnik
Automatisierung und Informationstechnik
Energie, Elektronik und Umwelt
Kommunikationstechnologie

April 2012
Inhalt

Module des Grundlagenstudiums

B01 (Mathematik) ... 2
B02 (Digitaltechnik) .. 4
B03 (Grundlagen der Elektrotechnik) 5
B04 (Informatik) ... 7
B05 (Soziale Kompetenz 1) .. 8
B06 (Physik) .. 9
B07 (Grundlagen der Elektronik und Messtechnik) 11
B08 (Grundlagen der Informationstechnik) 12
B09 (Methoden der Elektrotechnik) 13
B10 (Mikroprozessoren) .. 15
B11 (Messtechnik) ... 16
B12 (Simulation technischer Systeme) 17
B13 (Grundlagen der Systemtheorie und Regelungstechnik) ... 18
B14 (Elektronik) ... 19

Module des Vertiefungsstudiums - gemeinsame Module für alle Vertiefungen

B15 (Soziale Kompetenz 2) ... 21
B31 (BPP-Vorbereitungsveranstaltungen) 22
B32 (Berufspraktische Phase) .. 23
B33 (Bachelormodul) ... 24

Module des Vertiefungsstudiums der Automatisierung und Informationstechnik

BA16 (Regelungstechnik) ... 26
BA17/BE17 (Software Engineering) 27
BA18 (Embedded Systems) ... 28
BA19 (Aktorik und Netzwerke) ... 29
BA20 (Sensorik und Signalverarbeitung) 30
BA21 (Modellbildung und Identifikation) 31
BA22 (Einführung in die Robotik) 32
BA23 (Realzeitsysteme) ... 33
BA24 (Digitale Regelungstechnik) 34
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE20/BA25</td>
<td>Automatisierungssysteme</td>
</tr>
<tr>
<td>BA26</td>
<td>Ingenieurwissenschaft 1</td>
</tr>
<tr>
<td>BA27</td>
<td>Motion Control</td>
</tr>
<tr>
<td>BA28</td>
<td>Industrielle Datenkommunikation</td>
</tr>
<tr>
<td>BA29</td>
<td>Ingenieurwissenschaft 2</td>
</tr>
<tr>
<td>BA30</td>
<td>Projektseminar</td>
</tr>
<tr>
<td>BE16</td>
<td>Regelungstechnik</td>
</tr>
<tr>
<td>BA17/BE17</td>
<td>Software Engineering</td>
</tr>
<tr>
<td>BE18</td>
<td>Elektrische Maschinen 1</td>
</tr>
<tr>
<td>BE19</td>
<td>Leistungselektronik 1</td>
</tr>
<tr>
<td>BE20/BA25</td>
<td>Automatisierungssysteme</td>
</tr>
<tr>
<td>BE21</td>
<td>Energieversorgung</td>
</tr>
<tr>
<td>BE22</td>
<td>Elektrische Maschinen und Leistungselektronik-Labor</td>
</tr>
<tr>
<td>BE23</td>
<td>Elektrische Maschinen 2 und Leistungselektronik 2</td>
</tr>
<tr>
<td>BE24</td>
<td>Datenkommunikation, Leittechnik und Netzbetrieb für Energienetze</td>
</tr>
<tr>
<td>BE25</td>
<td>Hochspannungs- und Hocheleistungsanlagen</td>
</tr>
<tr>
<td>BE26</td>
<td>Regenerative Energien</td>
</tr>
<tr>
<td>BE27</td>
<td>Ingenieurwissenschaft 1</td>
</tr>
<tr>
<td>BE28</td>
<td>Ingenieurwissenschaft 2</td>
</tr>
<tr>
<td>BE29</td>
<td>Ingenieurwissenschaft 3</td>
</tr>
<tr>
<td>BE30</td>
<td>Ingenieurwissenschaft 4</td>
</tr>
<tr>
<td>BE27V01</td>
<td>Elektromagnetische Verträglichkeit (EMV)</td>
</tr>
</tbody>
</table>

Wahlpflichtkatalog BA26V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA26V01</td>
<td>Elektromagnetische Verträglichkeit (EMVI)</td>
</tr>
<tr>
<td>BA26V02</td>
<td>Einsatz von Visualisierungssystemen für technische Systeme</td>
</tr>
<tr>
<td>BA26V03</td>
<td>Prozessleitsysteme</td>
</tr>
<tr>
<td>BA26V04</td>
<td>Spielrobotik</td>
</tr>
<tr>
<td>BA26V05</td>
<td>Skriptsprachen</td>
</tr>
<tr>
<td>BA26V06</td>
<td>Embedded Software</td>
</tr>
<tr>
<td>BA26V07</td>
<td>Technologie</td>
</tr>
<tr>
<td>BA26V08</td>
<td>VHDL/VHDL-AMS</td>
</tr>
<tr>
<td>BA26V09</td>
<td>Regelung von Roboterarmen</td>
</tr>
<tr>
<td>BA26V10</td>
<td>Prozess- und Produktqualität in der Software Entwicklung</td>
</tr>
<tr>
<td>BA26V11</td>
<td>Automotive Software</td>
</tr>
</tbody>
</table>

Module des Vertiefungsstudiums Energie, Elektronik und Umwelttechnik

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE16</td>
<td>Regelungstechnik</td>
</tr>
<tr>
<td>BA17/BE17</td>
<td>Software Engineering</td>
</tr>
<tr>
<td>BE18</td>
<td>Elektrische Maschinen 1</td>
</tr>
<tr>
<td>BE19</td>
<td>Leistungselektronik 1</td>
</tr>
<tr>
<td>BE20/BA25</td>
<td>Automatisierungssysteme</td>
</tr>
<tr>
<td>BE21</td>
<td>Energieversorgung</td>
</tr>
<tr>
<td>BE22</td>
<td>Elektrische Maschinen und Leistungselektronik-Labor</td>
</tr>
<tr>
<td>BE23</td>
<td>Elektrische Maschinen 2 und Leistungselektronik 2</td>
</tr>
<tr>
<td>BE24</td>
<td>Datenkommunikation, Leittechnik und Netzbetrieb für Energienetze</td>
</tr>
<tr>
<td>BE25</td>
<td>Hochspannungs- und Hocheleistungsanlagen</td>
</tr>
<tr>
<td>BE26</td>
<td>Regenerative Energien</td>
</tr>
<tr>
<td>BE27</td>
<td>Ingenieurwissenschaft 1</td>
</tr>
<tr>
<td>BE28</td>
<td>Ingenieurwissenschaft 2</td>
</tr>
<tr>
<td>BE29</td>
<td>Ingenieurwissenschaft 3</td>
</tr>
<tr>
<td>BE30</td>
<td>Ingenieurwissenschaft 4</td>
</tr>
<tr>
<td>BE27V01</td>
<td>Elektromagnetische Verträglichkeit (EMV)</td>
</tr>
</tbody>
</table>

Wahlpflichtkatalog BE27V

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V01</td>
<td>Elektromagnetische Verträglichkeit (EMVI)</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V02</td>
<td>Netztraining</td>
<td>72</td>
</tr>
<tr>
<td>BE27V03</td>
<td>Rechnerunterstützte Anlagenplanung</td>
<td>73</td>
</tr>
<tr>
<td>BE27V04</td>
<td>Elektrische Bahnen</td>
<td>74</td>
</tr>
<tr>
<td>BE27V05</td>
<td>Ausgewählte Kapitel der Messtechnik</td>
<td>75</td>
</tr>
<tr>
<td>BE27V06</td>
<td>Schutztechnik</td>
<td>76</td>
</tr>
<tr>
<td>BE27V07</td>
<td>Haustechnik</td>
<td>77</td>
</tr>
<tr>
<td>BE27V08</td>
<td>Rechnergestützte Schaltungsentwicklung</td>
<td>78</td>
</tr>
<tr>
<td>BE27V09</td>
<td>Elektromobilität</td>
<td>79</td>
</tr>
<tr>
<td>BE27V10</td>
<td>Projekt mit Umweltbezug</td>
<td>80</td>
</tr>
<tr>
<td>BE27V11</td>
<td>Elektrische Energiespeicher für mobile Anwendungen</td>
<td>81</td>
</tr>
<tr>
<td>BE27V12</td>
<td>Steuergeräte im Fahrzeug</td>
<td>82</td>
</tr>
<tr>
<td>BE27V13</td>
<td>Elektrischer Personenschutz und Vorschriften in der Fahrzeugtechnik</td>
<td>83</td>
</tr>
<tr>
<td>BE27V14</td>
<td>Lichttechnik</td>
<td>84</td>
</tr>
<tr>
<td>BE27V15</td>
<td>Hochspannungs- und Schaltanlagentechnologie in der Praxis</td>
<td>85</td>
</tr>
<tr>
<td>BE27V16</td>
<td>Elektrizitätswirtschaft</td>
<td>86</td>
</tr>
<tr>
<td>BE27V17</td>
<td>Wasserstofftechnik und Brennstoffzellen</td>
<td>87</td>
</tr>
<tr>
<td>BE27V18</td>
<td>Schaltzeitetze</td>
<td>88</td>
</tr>
<tr>
<td>BE27V19</td>
<td>Regelungstechnik für Antriebe</td>
<td>89</td>
</tr>
</tbody>
</table>

Module des Vertiefungsstudiums der Kommunikationstechnologie

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK16</td>
<td>Grundlagen der Nachrichtentechnik</td>
<td>90</td>
</tr>
<tr>
<td>BK17</td>
<td>Übertragungstechnik</td>
<td>91</td>
</tr>
<tr>
<td>BK18</td>
<td>Signalverarbeitung 1</td>
<td>92</td>
</tr>
<tr>
<td>BK19</td>
<td>Signalverarbeitung 2</td>
<td>93</td>
</tr>
<tr>
<td>BK20</td>
<td>Entwurf digitaler Systeme</td>
<td>94</td>
</tr>
<tr>
<td>BK21</td>
<td>Softwaregestützter Systementwurf</td>
<td>95</td>
</tr>
<tr>
<td>BK22</td>
<td>Multimediaotechnik</td>
<td>96</td>
</tr>
<tr>
<td>BK23</td>
<td>Kommunikationsnetze</td>
<td>97</td>
</tr>
<tr>
<td>BK24</td>
<td>Modulation</td>
<td>98</td>
</tr>
<tr>
<td>BK25</td>
<td>Optische Netze</td>
<td>99</td>
</tr>
<tr>
<td>BK26</td>
<td>Codierte Datenübertragung</td>
<td>100</td>
</tr>
<tr>
<td>BK27</td>
<td>Hochfrequenz- und Mikrowellentechnik</td>
<td>101</td>
</tr>
<tr>
<td>BK28</td>
<td>Kommunikationssysteme</td>
<td>102</td>
</tr>
<tr>
<td>BK29</td>
<td>Ingenieurwissenschaft 1</td>
<td>103</td>
</tr>
<tr>
<td>BK30</td>
<td>Ingenieurwissenschaft 2</td>
<td>104</td>
</tr>
<tr>
<td>BK29VL</td>
<td>Wahlpflichtkatalog</td>
<td>105</td>
</tr>
</tbody>
</table>

Wahlpflichtkatalog BK29VL

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL01</td>
<td>Elektromagnetische Verträglichkeit (EMV)</td>
<td>106</td>
</tr>
<tr>
<td>BK29VL02</td>
<td>Internet-Kommunikation</td>
<td>107</td>
</tr>
</tbody>
</table>

BBPO-BE / Anlage 5
B. Eng. - Elektrotechnik und Informationstechnik

Stand: April 2012
Inhaltsverzeichnis

BK29VL03 [Netzwerk-Design] ... 109
BK29VL04 [Netzsicherheit und Netzmanagement] .. 110
BK29VL05 [Ausgewählte Kapitel der optischen Nachrichtenübertragung] 111
BK29VL06 [Simulationsverfahren in der Hochfrequenz- und Mikrowellentechnik] 112
BK29VL07 [Satellite Communications] .. 113
BK29VL08 [Ausgewählte Kapitel der drahtlosen Kommunikation] 114
BK29VL09 [Simulation und Realisierung von Kommunikationssystemen] 115
BK29VL10 [Mobilfunkanäle] ... 116
BK29VL11 [Ausgewählte Kapitel der Signalverarbeitung] 117
BK29VL12 [Mobile ad-hoc Netzwerke] .. 118
BK29VL13 [Radartechnik] ... 119
BK29VL14 [Labor Optische Nachrichtenübertragung / Photonische Netze] 120
BK29VL15 [Labor Mikrowellentechnik] .. 121
BK29VL16 [Labor Kommunikationsnetze] .. 122
BK29VL17 [Labor Nachrichtenverarbeitung und Multimediatechnik] 123
BK29VL18 [Sprachverarbeitung] ... 124
Modulhandbuch

Bachelor of Engineering
Elektrotechnik und Informationstechnik

Module des Grundlagenstudiums
B01 (Mathematik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 1</th>
<th>Sem. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B01</td>
<td>Mathematik</td>
<td>Pflicht</td>
<td>Mathematik 1</td>
<td>10 CP</td>
<td>8 V, 2 Ü</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mathematik 2</td>
<td>5 CP</td>
<td>4 V, 2 Ü</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r)	weitere Lehrende
Aulenbacher (Fb. MN) | Pfeifer, Döhler

1. Inhalte

Inhalte Lehrveranstaltung Mathematik 1:
- Zahlenarten (einschließlich komplexer Zahlen und deren Grundrechenarten)
- Lineare Algebra (lineare Gleichungssysteme, Matrizen, Determinanten, Vektoren, Anwendung der Vektorrechnung)
- Funktionen (Funktionsbegriff einschließlich Umkehrfunktionen, Funktionen reeller und komplexer Veränderlichen, insbesondere rationale, Wurzel-, komplexe Exponential-, trigonometrische und hyperbolische Funktionen und deren Umkehrfunktionen, Anwendungen)
- Differentialrechnung (Grenzwerte, Ableitung, Technik des Differenzierens, Anwendung der Differentialrechnung)
- Integralrechnung (bestimmtes und unbestimmtes Integral, Technik des Integrierens, uneigentliches Integral, Anwendungen der Integralrechnung), Mehrfachintegrale (Flächenintegrale)
- Reihenentwicklung (Potenzreihen, Fourier-Reihen und deren Anwendungen)

Inhalte Lehrveranstaltung Mathematik 2:
In Vorlesung und Übung werden folgende Themen behandelt:
- Differentialgleichungen (Arten von Differentialgleichungen, Trennen der Veränderlichen, Lineare Differentialgleichungen insbesondere mit konstanten Koeffizienten, Anwendungen),
- Funktionen mehrerer (reeller) Veränderlicher einschließlich partieller Differentiation und Mehrfachintegralen
- Laplace-Transformation (Grundbegriffe, Transformationsregeln, Anwendungen)

2. Ziele

Die unterschiedlichen Vorkenntnisse der Studierenden sollen ausgeglichen werden.

Die Studierenden beherrschen die grundlegenden Techniken zur Lösung von gewöhnlichen linearen Differentialgleichungen. Sie sind in der Lage, diese Methoden auf einfache, elektrotechnische Problemsituationen anzuwenden.

Außerdem beherrschen die Studierenden die elementaren Rechentechniken zur Behandlung von Funktionen mehrerer Veränderlicher.

3. Lehr- und Lernformen

Vorlesung und Übung.

4. Leistungspunkte und Arbeitsaufwand

15 CP, 450 Stunden insgesamt davon 225 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung in Form einer Klausur (Dauer: 90 min) zu der Lehrveranstaltung „Mathematik 1“, Prüfungsleistung in Form einer Klausur (Dauer: 120 min) über den gesamten Lehrinhalt des Moduls am Ende des Moduls.
Wiederholungsmöglichkeiten für die Prüfungsvorleistung und Prüfungsleistung bestehen im Folgesemester.
Voraussetzung für die Teilnahme an der Prüfungsleistung „Mathematik“ ist das Bestehen der Prüfungsvorleistung Mathematik 1.

6. Voraussetzungen
Keine.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über zwei Semester, die Lehrveranstaltung „Mathematik 1“ wird im Wintersemester angeboten, die Lehrveranstaltung „Mathematik 2“ im Sommersemester.
Lehrveranstaltung „Mathematik 1“: 8 SWS Vorlesung und 2 SWS Übung.
Lehrveranstaltung „Mathematik 2“: 4 SWS Vorlesung und 2 SWS Übung.

8. Verwendbarkeit des Moduls
Das Modul vermittelt Basiswissen in Mathematik, das für alle ingenieurwissenschaftlichen Studiengänge erforderlich ist.
B02 (Digitaltechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Digitaltechnik</td>
<td>Pflicht</td>
<td>Digitaltechnik</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Digitaltechnik-Labor</td>
<td>3 V, 1 L</td>
</tr>
<tr>
<td>Modulverantwortliche[r]</td>
<td>weitere Lehrende</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen</td>
<td>Fromm, Meuth, Schumann, Wirth, Bauer, Krauß</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Inhalte**
 - Boolesche Algebra, Schaltungsanalyse und Schaltungssynthese
 - Binäre Kodes, Zahlensysteme, Rechenverfahren
 - Schaltnetze (Rechenschaltungen, Kodierer, Auswahl- und Schaltungen, Prozessoren-Grundlagen)
 - Schaltwerke (Kippschaltungen, Zähler, Frequenzteiler, rückgekoppelte Schieberegister, einfache Automaten)
 - Speicherarchitekturen, Konfiguration, Adressierung
 - Entwurfswerkzeuge, schematische Schaltungseingabe, Test- und Simulationsverfahren, nicht-ideale Hardware-Eigenschaften
 - Hierarchischer Systementwurf, Bus-Vernetzung
 - Begleitende Übungen und/oder Hardwaretests im Labor

2. **Ziele**
 Ziel des Moduls ist, den Studierenden Kenntnisse in Digitaltechnik und die Nutzung systematischer Entwurfsverfahren zu vermitteln.

3. **Lehr- und Lernformen**
 Vorlesung mit integrierten Übungen + Labor.

4. **Leistungspunkte und Arbeitsaufwand**
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**
 Die Prüfungsleistung „Digitaltechnik“ in Form einer Klausur (Dauer: 90 Minuten) über den gesamten Lehrinhalt des Moduls findet am Ende jedes Semesters statt.

6. **Voraussetzungen**
 Keine.

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**
 Das Modul erstreckt sich über ein Semester und wird im Sommer- und Wintersemester angeboten.
 Lehrveranstaltung „Digitaltechnik“: 3 SWS Vorlesung.
 Lehrveranstaltung „Digitaltechnik-Labor“: 1 SWS Labor.

8. **Verwendbarkeit des Moduls**
 Das Modul vermittelt umfassendes Basiswissen in Digitaltechnik und ist verwendbar für alle ingenieurwissenschaftlichen Studiengänge.
B03 (Grundlagen der Elektrotechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 1</th>
<th>Sem. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B03</td>
<td>Pflicht</td>
<td>Elektrotechnik 1</td>
<td>7,5 CP</td>
<td>6 V, 2 Ü</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Elektrotechnik 2</td>
<td>7,5 CP</td>
<td>6 V, 2 Ü</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Gerdes Andert, Garrelts, Hoppe, Schmidt-Walter, Loch

1. Inhalte
Inhalte Lehrveranstaltung Elektrotechnik 1:
1. Gleichstromnetzwerke
- Einführung mit Zusammenstellung von Grundlagen und elektrischen Größen
- Gesetze im elektrischen Stromkreis, Quellen und Verbraucher
- Verluste, Wirkungsgrad und Leistungsmaximierung
- Widerstandsnetzwerke mit Strom- und Spannungsteilung
- Analyse von Gleichstromnetzwerken

2. Wechselstromnetzwerke I
- Wechselstromgrößen, Impedanzen im Wechselstromkreis
- Leistungen im Wechselstromkreis
- Komplexe Methode zur Analyse von Wechselstromnetzwerken, komplexe Übertragungsfunktion, komplexe Leistung
- Komplexe Zeigerdiagramme
- Schwingkreise
- Drehstromschaltungen

Inhalte Lehrveranstaltung Elektrotechnik 2:
1. Elektrisches Feld
- Das elektrostatische Feld
- Berechnung von elektrischen Feldern und Kapazitäten
- Das stationäre elektrische Strömungsfeld

2. Magnetisches Feld
- Das stationäre magnetische Feld
- Methoden zur Feldberechnung mit Beispielen [Durchflutungsgesetz]
- Der magnetische Kreis linear und nicht linear
- Zeitlich veränderliche magnetische Felder und Induktion
- Berechnung von Induktivitäten
- Transformator/Übertrager

3. Elektromagnetische Felder
- Zeitlich veränderliche elektrische Felder, elektromagnetische Felder und Wellen, Maxwell-Gleichungen und Wirbelströme

4. Wechselstromnetzwerke II
- Ortskurven und Bodediagramme
- Ein- und Ausschaltvorgänge von Schaltungen, Einschwingvorgänge
- Multifrequente Anregungen von Schaltungen, Fourierreihen und Anwendungen

2. Ziele
Ziel dieses Modules ist es, den Studierenden grundlegende Kenntnisse der Elektrotechnik aus dem Bereich der Gleichstromtechnik wie auch der Wechselspannungstechnik zu vermitteln. Die Studierenden sollen in der Lage sein, Schaltungen mit konzentrierten Elementen zu analysieren und zu berechnen. Weiterhin sollen sie in die Lage versetzt werden, konstante und veränderliche elektrische und...
magnetische Felder zu berechnen bei Vorgabe von Standardkomponenten und grundlegenden passiven Schaltungen der Elektrotechnik.

3. Lehr- und Lernformen
Vorlesung mit integrierten Beispielen, seminaristischer Unterricht, theoretische und praktische Übungen, Selbststudium.

4. Leistungspunkte und Arbeitsaufwand
15 CP, 450 Stunden insgesamt davon 225 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Prüfungsvorleistung in Form einer Klausur (Dauer: 90 min) zu der Lehrveranstaltung „Elektrotechnik 1“, Prüfungsleistung in Form einer Klausur (Dauer: 120 min) über den gesamten Lehrinhalt des Moduls am Ende des Moduls. Wiederholungsmöglichkeiten für die Prüfungsvorleistung und Prüfungsleistung bestehen jeweils im Folgesemester.

6. Voraussetzungen
Voraussetzung für die Teilnahme an der Prüfungsleistung „Grundlagen der Elektrotechnik“ ist das Bestehen der Prüfungsvorleistung „Elektrotechnik 1“.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über zwei Semester, die Lehrveranstaltungen „Elektrotechnik 1 und 2“ werden semesterweise angeboten.
Lehrveranstaltung „Elektrotechnik 1“: 6 SWS Vorlesung und 2 SWS Übung
Lehrveranstaltung „Elektrotechnik 2“: 6 SWS Vorlesung und 2 SWS Übung

8. Verwendbarkeit des Moduls
Das Modul vermittelt Basiswissen in Elektrotechnik und ist verwendbar für alle ingenieurwissenschaftlichen Studiengänge.
B04 (Informatik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Informatik</td>
<td>Pflicht</td>
<td>Informatik</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td>Informatik-Labor</td>
<td></td>
<td>2 V, 2 L</td>
<td></td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
[Fb. I] Spangler, Seeber

1. Inhalte
 - Grundbausteine eines Computers, Aufgabe von Compiler und Linker
 - Problemanalyse und strukturiertes Programmieren, Programmablaufplan, Struktogramm
 - prozedurale Programmierung in C/C++
 - main-Programm
 - Basis-Datentypen
 - Operatoren
 - Kontrollstrukturen (for, while, if, switch case, ...)
 - Daten-Ein- und –Ausgabe (cin, cout)
 - Arrays und Zeiger
 - Funktionen, Parameter, Rückgabewerte
 - Strukturen
 - Einführung in Debugging und Test

2. Ziele
 Die Studierenden sollen eine höhere Programmiersprache erlernen und praktische Fähigkeiten in der
 prozeduralen Programmierung erwerben. Sie sollen in die Lage versetzt werden, einfache
 Problemstellungen zu analysieren, einfache Algorithmen zu entwickeln, strukturierte
 softwaretechnische Lösungen zu entwerfen, zu dokumentieren (Programmablaufplan, Struktogramm)
 und selbständig zu programmieren.

3. Lehr- und Lernformen
 Vorlesungen und praktische Programmierübungen.

4. Leistungspunkte und Arbeitsaufwand
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Prüfungsleistung in Form einer Klausur (Dauer: 90 min) über den gesamten Lehrinhalt des Moduls am
 Ende des Moduls. Wiederholungsmöglichkeit für die Prüfungsleistung besteht jeweils im Folgesemester.
 Voraussetzung für die Teilnahme an der Prüfungsleistung „Informatik“ ist die erfolgreiche Teilnahme an
 der Veranstaltung „Informatik-Labor“.

6. Voraussetzungen
 keine

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester. Es wird im Sommer- und Wintersemester angeboten.
 Lehrveranstaltung „Informatik“: 2 SWS Vorlesung.
 Lehrveranstaltung „Informatik-Labor“: 2 SWS Labor.

8. Verwendbarkeit des Moduls
 Das Modul vermittelt Basiswissen in Informatik und ist verwendbar für alle ingenieurwissenschaftlichen
 Studiengänge.
B05 (Soziale Kompetenz 1)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B05</td>
<td>Soziale Kompetenz 1</td>
<td>Wahlpflicht</td>
<td>aus Katalog B05V1</td>
<td>2,5 CP 2 VLÜ</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende

Prüfungsausschuss abhängig von gewählter Lehrveranstaltung

1. Inhalte
 Katalog B05V1: (Technische) Fremdsprache; Wahl einer Fremdsprache aus dem Sprachenprogramm des Fachbereiches GS der Kompetenzstufe B1, B2, C1 oder C2. Bevorzugt sollen Technisches Englisch, Wirtschaftsenglisch, die Sprache eines Ziellandes für ein Auslandsemester oder für fremdsprachige Studierende auch die deutsche Sprache gewählt werden.
 Der Katalog kann entsprechend der Weiterentwicklung der Lehre erweitert werden. Über die Erweiterung oder Abänderung entscheidet der Fachbereichsrat des FB EIT. In begründeten Fällen können die Studierende auf Antrag beim Prüfungsausschuss auch andere Veranstaltungen aus den Themenkreisen Sprache, Arbeitstechniken, Kultur und Kommunikation, Wirtschaft, Arbeit und Beruf wählen.

2. Ziele
 Die Kompetenz in der gewählten Fremdsprache soll gesteigert und der allgemeine und fachbezogene Wortschatz erweitert werden.

3. Lehr- und Lernformen
 Vorlesung und Übung.

4. Leistungspunkte und Arbeitsaufwand
 2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Prüfungsvorleistungen sind im Allgemeinen nicht vorgesehen, die Prüfungen werden gemäß der entsprechenden Modulbeschreibung durchgeführt. Darüber hinaus können zusätzlich international anerkannte Zertifikate (TELC) erworben werden. (Hierbei können zusätzliche Kosten für den Prüfling entstehen.)

6. Voraussetzungen

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester, die Lehrveranstaltungen aus dem Katalog B05V1 werden jedes Semester angeboten. In der Regel sind jeweils 2 SWS Vorlesungen mit Übungen vorgesehen.

8. Verwendbarkeit des Moduls
 Das Modul vermittelt eine Erweiterung der Fremdsprachenkompetenz und ist verwendbar für alle ingenieurwissenschaftlichen Studiengänge.

Wahlpflichtkatalog B05V1 des Moduls Soziale Kompetenz 1

Fachbereich GS:
Fremdsprache der Kompetenzstufe B1, B2, C1 oder C2.
B06 (Physik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B06</td>
<td>Physik</td>
<td>Pflicht</td>
<td>Physik</td>
<td>7,5 CP</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Ströbel [Fb. MN] Brinkmann, Heddrich, Kober [Fb. MN]

1. Inhalte

Einführung: Physikalische Größen, Internationales Einheitensystem

1. Mechanik
- Gleichförmige und gleichmäßig beschleunigte Bewegung, Überlagerung von Bewegungen
- Dynamisches Grundgesetz, Gewichtskraft, Reibungskräfte, Federkraft
- Energieerhaltungssatz, Energieformen, Energiebilanz
- Impulserhaltungssatz, Stoßvorgänge
- Bewegung auf der Kreisbahn, Bewegung von Himmelskörpern und Satelliten
- Rotation: Trägheitsmoment, Satz von Steiner, Rollbewegung, Drehmoment, Drehimpuls

2. Schwingungen und Wellen
- Harmonische Schwingung: Federpendel und analoge Systeme, Schwingungsgleichung
- Mathematisches und physisches Schwerependel
- Freie gedämpfte Schwingung
- Erzwungene Schwingung, Resonanz
- Wellenausbreitung: Elastische Wellen, Schall, Licht, Doppler-Effekt
- Stehende Wellen
- Interferenz: Doppelspalt, Gitter, breiter Spalt

3. Wärmelehre
- Temperatur und Wärme, Wärmeenergie, Wärmebilanz, Mischungsvorgänge
- Kinetiese Gastheorie, Zustandsgleichung des idealen Gases, Teilchenzahl, Stoffmenge

4. Optik
- Brechungsgesetz, Totalreflexion
- Optische Abbildung, Abbildung mit Sammellinsen, Konstruktion optischer Abbildungen
- Optische Instrumente: Lupe, Mikroskop, Fernrohr, Vergrößerung und Auflösungsvermögen

2. Ziele

3. Lehr- und Lernformen

Vorlesung in seminaristischer Form mit Experimenten und integrierten Übungen, Selbststudium.

4. Leistungspunkte und Arbeitsaufwand

7,5 CP, 225 Stunden insgesamt, davon 90 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsleistung in Form einer Klausur [Dauer: 90 min] über den gesamten Lehrinhalt des Moduls am Ende des Moduls.
Wiederholungsmöglichkeiten für die Prüfungsleistung bestehen jeweils im Folgesemester.

6. Voraussetzungen

Keine.
7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester:
 Lehrveranstaltung „Physik”: 6 SWS Vorlesung + 1 SWS Übungen.

8. Verwendbarkeit des Moduls
 Das Modul vermittelt grundlegende Fähigkeiten und Basiswissen der Physik als Grundlage für das
 weitere ingenieurwissenschaftliche Studium.
1. Inhalte

Grundlagen der Elektronik:
- Passive elektronische Bauelemente (Widerstände, Kondensatoren und Spulen)
- Idealer Operationsverstärker (nichtinvertierender-, invertierender Verstärker, Addition, Subtraktion, Komparator, Schmitt-Trigger)
- RC-Schaltungen und Filter
- Aktive Filter

Grundlagen der Messtechnik:
- Begriffe, SI-System (Definitionen und Darstellungen)
- Fehlerrechnung - Messunsicherheit, Messabweichung
- systematische und zufällige Fehler, Statistik
- Korrektur, Fehlerfortpflanzung, Schätzwerte: \(F_{\text{max}} \), \(F_{\text{wahr}} \)
- Multimeter - Messung von U, I, R, L, C
- Oszilloskop - Aufbau, Funktionsweise, Betriebsarten (x/y, x/t, Speicherung)
- Einstellungen: Kopplungen, Triggerung
- Tastteiler
- Anwendungen: Kalibrierung, SpannungsDarstellung, Kennlinien,
- Phasenmessung (t-cal, t-non-cal, Lissajous), Frequenzmessung
- digitales Speicheroszilloskop

2. Ziele

Ziel des Moduls ist, den Studierenden Grundlagen von elektronischen Bauelementen und einfachen Schaltungen, sowie Grundlagen der elektrischen Messtechnik zu vermitteln.

3. Lehr- und Lernformen

Vorlesung

4. Leistungspunkte und Arbeitsaufwand

5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsleistung in Form einer Klausur [Dauer: 90 min] über den gesamten Lehrinhalt des Moduls am Ende des Moduls.

6. Voraussetzungen

Mathematik 1, Elektrotechnik 1 sollten abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Das Modul erstreckt sich über ein Semester. Es wird jedes Semester angeboten.

8. Verwendbarkeit des Moduls

Das Modul bereitet auf die Module Elektronik und Messtechnik vor, und ist verwendbar für alle ingenieurwissenschaftlichen Studiengänge.
B08 (Grundlagen der Informationstechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B08</td>
<td>Grundlagen der Informationstechnik</td>
<td>Pflicht</td>
<td>Grundlagen der Informationstechnik</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 V, 2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Wirth Freitag, Fromm, Lipp

1. Inhalte
- Grundbegriffe der Objektorientierung
- Objettorientierung und C++
- Klassen, Objekte, Methoden, Attribute
- spezielle Methoden (Konstruktoren, Destruktor, Operatoren)
- Adressen, Zeiger, dynamische Speicherverwaltung
- Klassenbeziehungen (Komposition, Assoziation, Aggregation)
- Algorithmen (Filtern, Sortieren, ...)
- Software-Entwurf und -Dokumentation mit UML (Klassendiagramm, Aktivitätsdiagramm)
- Systematisches Testen und Debuggen

2. Ziele

3. Lehr- und Lernformen
Vorlesung mit integrierten Übungen

4. Leistungspunkte und Arbeitsaufwand
5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Prüfungsleistung in Form einer praktischen Prüfung am Rechner (Dauer: 90 min) über den gesamten Lehrrahmen des Moduls am Ende des Moduls.
Wiederholungsmöglichkeit für die Prüfungsleistung besteht jeweils im Folgesemester. Voraussetzung für die Teilnahme an der Prüfungsleistung „Grundlagen der Informationstechnik“ ist die erfolgreiche Teilnahme an den Übungen.

6. Voraussetzungen
Der erfolgreiche Abschluss des Moduls B04 Informatik wird empfohlen.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester. Es wird im Sommer- und Wintersemester angeboten.
Lehrveranstaltung „Grundlagen der Informationstechnik“: 2 SWS Vorlesung + 2 SWS Übung.

8. Verwendbarkeit des Moduls
Das Modul vermittelt Basiswissen in der Software-Entwicklung für ingenieurwissenschaftliche Problemstellungen und ist verwendbar für alle ingenieurwissenschaftlichen Studiengänge.
B09 (Methoden der Elektrotechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B09</td>
<td>Methoden der Elektrotechnik</td>
<td>Pflicht</td>
<td>Methoden der Elektrotechnik</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 V, 4 Ü</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r):

Gaspard/Hoppe N.N.

1. Inhalte

In diesem Modul sollen anhand konkreter Übungsbeispiele wichtige Methoden aus dem gesamten Spektrum der Elektrotechnik eingeübt werden. Die Veranstaltung stützt sich auf die theoretischen Inhalte der ersten beiden Semester und wiederholt und vertieft diese durch Übungen. In der Modulbeschreibung werden repräsentative Anwendungsfälle benannt und den mathematischen Begrifflichkeiten zugeordnet und nicht umgekehrt.

Beschreibung und Analyse elektrischer Systeme im Zeit- und Bildbereich

- Darstellung periodischer Zeitfunktionen im Frequenzbereich durch komplexes Amplitudenspektrum (Fourierreihe), z.B. Berechnung der Fourierkoeffizienten einer periodischen Rechteckspannung und physikalische Bedeutung des zugehörigen Linienspektrums, zeichnerische Überlagerung sinusförmiger Teilschwingungen.

Drehstromsysteme, Anwendungen der komplexen Wechselstromrechnung

Stochastische Methoden in der Elektrotechnik

- Begriffe: (relative) Häufigkeit, Wahrscheinlichkeit, Zufallsgröße (Zufallsvvariable), Wahrscheinlichkeitsverteilung, Wahrscheinlichkeitsdichtefunktion.
- Funktionen und Kenngrößen von Zufallsgrößen: Kennlinienglieder, Mittelwert (Erwartungswert), Streuung, Zentraler Grenzwertsatz und Normalverteilung.
- Exemplarische Anwendungen und wichtige Wahrscheinlichkeitsdichtefunktionen: Thermische Rauschspannung (Normalverteilung), Detektion/Schwellwertentscheidung (Fehlerfunktion bzw. komplementäre Fehlerfunktion), Poissonverteilung zur Dimensionierung von Netzen, Rayleigh- und Rice-Verteilung bei der Funkübertragung.

Weitere ausgewählte Methoden der Elektrotechnik

- Umrechnung von Vierpolparametern, z.B. Z-Parameter in Y-Parameter und umgekehrt.
2. Ziele

3. Lehr- und Lernformen
Vorlesung und Übung.

4. Leistungspunkte und Arbeitsaufwand
5 CP, 150 Stunden insgesamt davon 90 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Prüfungsleistung in Form einer Klausur [Dauer: 90 min] über den gesamten Lehrinhalt des Moduls am Ende des Moduls.

6. Voraussetzungen
Kenntnisse in
- Mathematik (insbesondere komplexe Zahlen, Differentialgleichungen, Laplace-Transformation)
- Grundlagen der Elektrotechnik
- Physik

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Sommer- und Wintersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul vermittelt und vertieft anhand von Vorlesungen und Übungen Basiswissen für verschiedene Methoden der Elektrotechnik und ist verwendbar für alle ingenieurwissenschaftlichen Studiengänge.
B10 (Mikroprozessoren)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B10</td>
<td>Mikroprozessor</td>
<td>Pflicht</td>
<td>Mikroprozessoren, Mikroprozessor-Labor</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 V, 2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Schaefer Denker, Fromm, Lipp, Rücklé, Wirth, Krauß, Schumann

1. Inhalte
- Rechnerarchitektur
- Aufbau und Funktionsweise einfacher Mikrocontroller CPU’s
- Befehlssatz, Maschinensprache und Assembler am Beispiel einer einfachen RISC CPU
- Mikrocontroller-Programmierung in Hochsprache
- Interrupts und Interrupt-Service-Routinen
- Entwicklung einfacher Mikrocontroller-Anwendungen im Labor, unter Verwendung von Assembler und Hochsprache

2. Ziele

3. Lehr- und Lernformen
Vorlesung und Labor.

4. Leistungspunkte und Arbeitsaufwand
5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Die Prüfungsleistung wird in Form einer Klausur (Dauer: 90min) am Ende des Moduls abgelegt. Voraussetzung für die Teilnahme an der Prüfungsleistung ist die erfolgreiche Teilnahme am Labor. Wiederholungsmöglichkeit für die Prüfungsleistung besteht jeweils im Folgesemester.

6. Voraussetzungen
Der erfolgreiche Abschluss der Module Grundlagen der Informatik, Digitaltechnik und Grundlagen der Informationstechnik wird empfohlen.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

8. Verwendbarkeit des Moduls
Das Modul vermittelt Basiswissen in der Mikroprozessortechnik und -Programmierung und ist verwendbar für alle ingenieurwissenschaftlichen Studiengänge.
B11 (Messtechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Messtechnik</td>
<td>Pflicht</td>
<td>Messtechnik Vorlesung</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Messtechnik Labor</td>
<td>2 V, 2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) | weitere Lehrende
Denker | Frontzek, Gaspard, Wiese

1. Inhalte
- Signalkenngrößen - arithmetischer Mittelwert, Gleichrichtwert, Effektivwert (TMRS, PRMS)
- Digitalisierung - Grundlagen der Digitalisierung: Abtastung, Aliassignale,
 - Antialiasingfilter, Quantisierung, Rekonstruktion
 - Umsetzer: direkt und indirekt umsetzende Verfahren
- Messbrücken - Grundlagen von Gleich- und Wechselstrombrücken
- Leistungsmessung, Spektren

Die Laborversuche ergänzen und vertiefen die Inhalte der Vorlesung.

2. Ziele
Ziel des Moduls ist die Vermittlung von Grundlagen zur elektrischen Messtechnik und deren Anwendung in Laborversuchen.

3. Lehr- und Lernformen
Vorlesungen und praktische Laborversuche.

4. Leistungspunkte und Arbeitsaufwand
5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Prüfungsleistung in Form einer Klausur (Dauer: 90 min), über den gesamten Lehrinhalt des Moduls, am Ende des Moduls. Prüfungsvorleistung ist die erfolgreiche Teilnahme an der Veranstaltung „Messtechnik Labor“, die auch nach der Modulklausur erbracht werden kann.

6. Voraussetzungen
Modul Grundlagen der Elektronik und der Messtechnik sollte abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester. Es wird jedes Semester angeboten.

8. Verwendbarkeit des Moduls
Das Modul vermittelt Basiswissen zur Messtechnik und ist verwendbar für alle ingenieurwissenschaftlichen Studiengänge.
B12 (Simulation technischer Systeme)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B12</td>
<td>Pflicht Simulation technischer Systeme</td>
<td>Simulation technischer Systeme - Vorlesung</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simulation technischer Systeme - Labor</td>
<td>2 V, 2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r): Freitag, Fromm, Krauß, Lipp, Schnell, Wirth, Wagner

1. **Inhalte**
 - Simulations-Software
 - Generierung, Erfassung, Verarbeitung und Visualisierung von Daten und Signalen z. B. für die Messtechnik
 - Simulation von einfachen Systemen wie sie in allen technischen Grundlagenmodulen vermittelt werden auf Basis von text- und grafisch basierten Simulationswerkzeugen.

2. **Ziele**
 Ziel des Moduls ist, den Studierenden Grundkenntnisse in der Simulation technischer Systeme zu vermitteln.

3. **Lehr- und Lernformen**
 Vorlesung und Labor-Übungen am Rechner.

4. **Leistungspunkte und Arbeitsaufwand**
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**
 Prüfungsleistung in Form einer praktischen Prüfung am Rechner (Dauer: 90 min) über den gesamten Lehrinhalt des Moduls am Ende des Semesters.
 Wiederholungsmöglichkeit für die Prüfungsleistung besteht jeweils im Folgesemester. Voraussetzung für die Teilnahme an der Prüfungsleistung „Simulation technischer Systeme“ ist die erfolgreiche Teilnahme an den Laborübungen.

6. **Voraussetzungen**
 Keine.

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**
 Das Modul erstreckt sich über ein Semester und wird semesterweise angeboten, jeweils 2 SWS Vorlesung und 2 SWS Labor.

8. **Verwendbarkeit des Moduls**
 Das Modul vermittelt Basiswissen in Simulation technischer Systeme, das für alle ingenieurwissenschaftlichen Studiengänge erforderlich ist.
B13 (Grundlagen der Systemtheorie und Regelungstechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B13</td>
<td>Grundlagen der Systemtheorie und Regelungstechnik</td>
<td>Pflicht</td>
<td>Grundlagen der Systemtheorie und Regelungstechnik</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 V, 1Ü</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Weigl-Seitz Freitag, Schultheiß, Schnell, Götze, Kleinmann

1. Inhalte
- Signalmodelle und Signalbeschreibungen
- Wichtige Signalformen
- Vertiefung und Anwendung der linearen Transformationen
- Mathematische Beschreibung einfacher zeitkontinuierlicher Systeme im Zeit- und Frequenzbereich (Linearität, Zeitinvarianz, Kausalität, Stabilität)
- Verknüpfung von Systemen
- Analyse und Beschreibung des statischen und dynamischen Verhaltens von LTI-Systemen
- Charakteristische Eigenschaften und Kennwerte elementarer LTI-Systeme
- Übertragungsverhalten der wichtigsten stetigen Regler
- Stabilität geschlossener Regelkreise (Hurwitz-Kriterium, Nyquist-Kriterium)
- Analyse des Verhaltens linearer Regelkreise (Stationäre Genauigkeit, Schnelligkeit und Dämpfung)
- Benutzung rechnergestützter Werkzeuge für die Simulation und Analyse dynamischer Systeme

2. Ziele
Die Studierenden beherrschen die Grundlagen der Systemtheorie und Regelungstechnik.

3. Lehr- und Lernformen
Vorlesung mit integrierten Beispielen, seminaristischer Unterricht, Übungen, Selbststudium.

4. Leistungspunkte und Arbeitsaufwand
5 CP, 150 Stunden insgesamt davon 75 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsduer und Prüfungsvoraussetzung
Prüfungsleistung in Form einer Klausur (Dauer: 90 min) über den Lehrinhalt des Moduls am Ende des Moduls.
Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester.

6. Voraussetzungen

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Sommer- und Wintersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul vermittelt Basiswissen in Grundlagen der Systemtheorie und Regelungstechnik, das für alle ingenieurwissenschaftlichen Studiengänge erforderlich ist.
1. Inhalte

Es werden nichtlineare elektronische Bauelemente und Schaltungen behandelt:
- Aktive elektronische Bauelemente (Grundlagen Halbleiter, Homogene Halbleiterbauelemente, wie PTC, NTC, PN-Übergang, Diode [Gleichrichter, LED, Fotodiode, z-Diode], Bipolartransistor
- [Emitterschaltung, Emitterfolger])
- Einfache Schaltungen (Stromquelle, Differenzverstärker)
- Reale Operationsverstärker (Eingangsstrom, Offsetspannung, Frequenzgang, Stabilität)
- Feldeffekt-Transistoren (FET, MOSFET, Verstärker, Schalter, CMOS und einfache digitale Schaltungen)
- Schaltungen
- IGBTs
- Betriebsarten A, B, AB, C
- Erwärmung und Kühlung
- Spannungsregler (linear und getaktet)
- PLL (optional)

Elektronik-Labor:
- Versuch „Diode und Transistor“ (Grundschatungen, Kennlinien, Erwärmung)
- Versuch „Operationsverstärker“ (Grundschatungen, Gegenkopplung, Filter, Bandbreite)
- Versuch „Elektronische Schaltung“ (Komparator, Schmitt-Trigger, Signalerzeugung)

2. Ziele

Die Studierenden sollen die Funktions- und Wirkungsweise von elektronischen Bauelementen und Schaltungen verstehen und in der Lage sein, eigene Schaltungen zu entwickeln.

3. Lehr- und Lernformen

Vorlesung und begleitendes Labor.

4. Leistungspunkte und Arbeitsaufwand

5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsvorleistung in Form eines Fachgesprächs zum „Elektronik-Labor“ (benotet).
Prüfungsleistung in Form einer Klausur (Dauer: 90 min) über den gesamten Lehrinhalt des Moduls am Ende des Moduls.

6. Voraussetzungen

keine

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Das Modul erstreckt sich über ein Semester. Es wird jedes Semester angeboten.

8. Verwendbarkeit des Moduls

Das Modul vermittelt Basiswissen in Elektronik und ist verwendbar für alle ingenieurwissenschaftlichen Studiengänge.
Modulhandbuch

Bachelor of Engineering
Elektrotechnik und Informationstechnik

Module des Vertiefungsstudiums - gemeinsame Module für alle Vertiefungen
B15 (Soziale Kompetenz 2)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 - 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soziale Kompetenz 2</td>
<td>Wahlpflicht</td>
<td>Teilmodul aus SuK-Modul 1 (Grundlagenstudium)</td>
<td>2.5 CP, 2 VLÜ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Teilmodul aus SuK-Modul 2 (Vertiefungsstudium)</td>
<td>2.5 CP, 2 VLÜ</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) | weitere Lehrende
Studiengangsleitung SuK | abhängig von gewählter Lehrveranstaltung

1. Inhalte
Lehrveranstaltungen aus dem sozial- und kulturwissenschaftlichen Begleitstudium (SuK) im Fachbereich Gesellschaftswissenschaften und Sozial Arbeit (GS).

Der Katalog kann entsprechend der Weiterentwicklung der Lehre erweitert werden. Über die Erweiterung oder Abänderung entscheidet der Fachbereichsrat des FB EIT. In begründeten Fällen können die Studierende auf Antrag beim Prüfungsausschuss auch andere Veranstaltungen aus den Themenkreisen Arbeitstechniken, Kultur und Kommunikation, Wirtschaft, Arbeit und Beruf wählen.

2. Ziele
Die Studierenden sollen Kenntnisse über kulturelle Voraussetzungen und Prägungen kennenlernen sowie moderne Organisations- und Arbeitsmethoden einsetzen lernen.

3. Lehr- und Lernformen
Vorlesung und Übung, bei Veranstaltungen die Arbeitstechniken vermitteln sollen, können auch Hausarbeiten und Präsentationen vorgesehen werden.

4. Leistungspunkte und Arbeitsaufwand
150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen 5 CP

5. Prüfungsform, Prüfungsduer und Prüfungsvoraussetzung
Prüfungsvorleistungen sind im Allgemeinen nicht vorgesehen, die Prüfungen werden gemäß der entsprechenden Modulbeschreibung durchgeführt.

6. Voraussetzungen
Die Voraussetzungen sind abhängig von den gewählten Teilmodulen.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester, die zugehörigen Lehrveranstaltungen werden im Winter- und Sommersemester angeboten. In der Regel sind jeweils 2 SWS Vorlesungen mit Übungen vorgesehen.

8. Verwendbarkeit des Moduls
Das Modul vermittelt Methodenkompetenz aus verschiedenen Disziplinen (Planungsmethodik, Strukturierungswissen, Organisations- und Kommunikationskompetenz und wirtschaftswissenschaftliche Themen) und ist damit verwendbar für alle ingenieurwissenschaftlichen Studiengänge.
B31 (BPP-Vorbereitungsveranstaltungen)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>B31</td>
<td>BPP-Vorbereitungsveranstaltungen</td>
<td>Pflicht</td>
<td>BPP-Vorseminar</td>
<td>1,25 CP 1 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kommunikationstechniken</td>
<td>1,25 CP 1 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Projektmanagement</td>
<td>2,5 CP 2 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r)

Gotze / Studienbereichsleitung SuK
Lehrende aus SuK

1. **Inhalte**

- Informationsveranstaltung: Informationen zu Planung und Ablauf des BPP
- Projektmanagement (2 V): Verständnisse von Projektmanagement (PM) und praktische Projektbearbeitung mit Formularvorgaben

2. **Ziele**

Die Studierenden sollen folgende Qualifikationen erwerben bzw. nachweisen:
- Kenntnisse nichttechnischer Aspekte der Ingenieurarbeit
- erfolgreiches Vorgehen bei Bewerbungen
- Orientierung am Arbeitsmarkt, Planung des eigenen Berufsweges
- Kompetenz in wissenschaftlicher Dokumentation
- Präsentation von Arbeitsergebnissen
- Beherrschung der Anwendung der Arbeitstechniken des Projektmanagement
- Beherrschung des Zeitmanagements und der Kostenverfolgung, Beherrschung der Risikoabschätzung

3. **Lehr- und Lernformen**

Vorlesung, Seminar, Präsentation

4. **Leistungspunkte und Arbeitsaufwand**

5 CP, 100 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**

Prüfungsdauer und -form werden zu Beginn der Veranstaltung bekannt gegeben.

6. **Voraussetzungen**

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**

Das Modul erstreckt sich über ein Semester; es wird in jedem Semester angeboten.

8. **Verwendbarkeit des Moduls**

Die erfolgreiche Teilnahme ist Voraussetzung für die Zulassung zum Modul B32 (BerufsPraktische Phase). Vorlesung und das Seminar sind für alle Studierenden, die sich in den Abschlusssemestern am Übergang zwischen Studium und Berufswelt befinden, geeignet.
B32 (Berufspraktische Phase)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>B32</td>
<td>Berufspraktische Phase</td>
<td>Pflicht</td>
<td>BPP-Praxisteil</td>
<td>20 CP</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r)

- Götze
- weitere Lehrende
- Alle Lehrenden im Studiengang, nach Wahl der Studierenden

1. **Inhalte**
 - Planung und Durchführung einer praktisch oder theoretisch orientierten Arbeit aus dem Studienschwerpunkt
 - Schriftliche Dokumentation

2. **Ziele**
 Die Studierenden sollen folgende Qualifikationen im Rahmen des vorgegebenen Themas erwerben bzw. nachweisen:
 - Kenntnisse nichttechnischer Aspekte der Ingenieurarbeit
 - selbständiges Arbeiten im Team
 - systematische Analyse und Lösung mit ingenieurmäßigen Methoden
 - Kompetenz in wissenschaftlicher Dokumentation
 - Präsentation von Arbeitsergebnissen

3. **Lehr- und Lernformen**
 Bearbeiten von Ingenieuraufgaben, Dokumentation

4. **Leistungspunkte und Arbeitsaufwand**
 20 CP, 600 Stunden

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**
 Über die Arbeit ist ein Technischer Bericht (schriftliche Ausarbeitung) zu erstellen.

6. **Voraussetzungen**

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**
 Das Modul umfasst eine praktische Tätigkeit von 13 Wochen (Vollarbeitszeit); es wird in jedem Semester angeboten.

8. **Verwendbarkeit des Moduls**
 Das Modul ist für alle Studierenden, die sich in den Abschlusssemestern am Übergang zwischen Studium und Berufswelt befinden, geeignet.
B33 (Bachelormodul)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>B33</td>
<td>Bachelormodul</td>
<td>Pflicht</td>
<td>Bachelorarbeit</td>
<td>12 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bachelor - Kolloquium</td>
<td>3 CP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche[r]</th>
<th>weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsausschuss</td>
<td>alle Lehrenden im Studiengang, nach Wahl der Studierenden</td>
</tr>
</tbody>
</table>

1. Inhalte
- Praktisch oder theoretisch orientierte Arbeit aus dem Bereich der Automatisierungs- und Informationstechnik, der Energietechnik, Elektronik und Umwelt oder der Telekommunikation (je nach Vertiefung)
- Schriftliche Dokumentation
- Seminar, wissenschaftliche Dokumentation und Präsentation technisch-wissenschaftlicher Ergebnisse
- Bachelor - Kolloquium

2. Ziele
Die Studierenden sollen folgende Qualifikationen im Rahmen des vorgegebenen Themas nachweisen:
- Selbstständigkeit
- systematische Analyse und Lösung mit ingenieurmäßigen Methoden
- Kompetenz in wissenschaftlicher Dokumentation

3. Lehr- und Lernformen
Betreute Arbeit mit Projektseminar, in dem auf Fragestellungen der wissenschaftlichen Dokumentation und Präsentation eingegangen wird, Kolloquium.

4. Leistungspunkte und Arbeitsaufwand
15 CP entsprechen 450 Stunden Arbeitsaufwand.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Über die Bachelorarbeit ist eine technische Beschreibung anzufertigen und im Rahmen des Bachelor - Kolloquiums ein zwanzigminütiger Fachvortrag zu halten, der in einem Zeitraum von 4 Wochen vor bis 4 Wochen nach Abgabezeitpunkt terminiert ist. Fachvortrag und Bachelorarbeit werden gemäß § 23 ABPO gewichtet im Verhältnis 1 zu 3.

6. Voraussetzungen
- 165 CP aus den Semestern 1 bis 6
- Berufspraktische Phase abgeschlossen

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Die Bearbeitungszeit für die Bachelorarbeit beträgt 10 Wochen zuzüglich der Vorbereitungszeit des Bachelor-Kolloquiums. Das Modul wird in der Regel im Wintersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul beschließt im Regelfall das Bachelor-Studium. Es ist im Rahmen von fachübergreifenden Projekten auch für andere Studiengänge nutzbar.
Modulhandbuch

Bachelor of Engineering
Elektrotechnik und Informationstechnik

Module des Vertiefungsstudiums der Automatisierung und Informationstechnik
BA16 (Regelungstechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA16</td>
<td>Regelungstechnik</td>
<td>Pflicht</td>
<td>Regelungstechnik</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Regelungstechnik-Labor</td>
<td>3 V, 1 L</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>weitere Lehrende</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weigl-Seitz</td>
<td>Weber, Kleinmann</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Inhalte
- Vertiefung der Aufgaben und Grundbegriffe der Regelungstechnik
- Entwurf linearer Regelkreise im Zeitbereich (Empirische Einstellregeln, Integralkriterien)
- Frequenzkennlinienverfahren (Loop Shaping)
- Symmetrisches Optimum, Betragsoptimum
- Wurzelortskurvenverfahren
- Nichtlineare Regler
- Analyse nichtlinearer Regelkreise mit der Methode der Beschreibungsfunktion
- Vermaschte Regelungen (Störgrößenaufschaltung, Kaskadenregelung, Vorsteuerung)
- Anwendung rechnergestützter Werkzeuge für die Simulation und Analyse von Regelkreisen

2. Ziele
Die Studierenden beherrschen die Grundlagen der Analyse und Synthese von Regelungssystemen.

3. Lehr- und Lernformen
Vorlesung und praktische Laborversuche.

4. Leistungspunkte und Arbeitsaufwand
5,0 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Sommer- und im Wintersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul dient innerhalb des Studiengangs als Basis für eine Reihe weiterer Module des Vertiefungsstudiums. Das Modul vermittelt Basiswissen der Regelungstechnik und ist verwendbar für andere ingenieurwissenschaftliche Studiengänge, die sich mit Regelungstechnik beschäftigen (Maschinenbau, Mechatronik, Energiewirtschaft und Wirtschaftsingenieurwesen).
BA17/BE17 (Software Engineering)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA17 BE17</td>
<td>Software Engineering</td>
<td>Pflicht</td>
<td>Software Engineering</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Software Engineering - Labor</td>
<td>2 V, 2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) | weitere Lehrende
Kleinmann | Fromm, Lipp

1. Inhalte
- Motivation für das Software Engineering
- Prozessmodelle
- Requirements Engineering
- Software-Modellierung und -Entwurf mit UML (Unified Modeling Language)
- Systematischer Software-Test
- Software-Dokumentation
- Software-Auslieferung und -Inbetriebnahme
- Software-Wartung und -Evolution
- Kurzeinführung/Verbindung zu Querschnittsthemen
 - Konfigurationsmanagement
 - Software-Qualität und -Standards
 - Software-Projektmanagement

2. Ziele

3. Lehr- und Lernformen
Vorlesungen und praktische Laborversuche

4. Leistungspunkte und Arbeitsaufwand
5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Die Klausur wird zum Ende des Moduls angeboten, eine Wiederholungsprüfung findet im Folgesemester statt.
Die Prüfungsdauer beträgt 90 Minuten.
Voraussetzung für die Teilnahme an der Prüfungsleistung „Software Engineering“ ist die erfolgreiche Teilnahme an den Laborübungen.

6. Voraussetzungen
Das Modul B04 (Informatik) muss abgeschlossen sein. Es wird empfohlen, dass das Modul B08 (Grundlagen der Informationstechnik) abgeschlossen ist.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Sommer- und im Wintersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul ist ein zentraler Baustein der informationstechnischen Ausbildung von Ingenieuren. Es unterstützt weiterhin die Vorbereitung für das Praxisprojekt und die Bachelor-Arbeit. Es ist auch in anderen Vertiefungsrichtungen im gleichen Studiengang sowie in verwandten ingenieurwissenschaftlichen Studiengängen (z.B. Maschinenbau, Mechatronik) verwendbar.
BA18 (Embedded Systems)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA18</td>
<td>Embedded Systems</td>
<td>Pflicht</td>
<td>Embedded Systems, Labor Embedded Systems</td>
<td>2,5 CP, 2 V, 2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) | weitere Lehrende
Rücklé | Schaefer

1. Inhalte
 Hardwarenahe Programmierung:
 - Zeitverhalten von Mikroprozessorsystemen
 - Komplexe Peripheriebausteine und deren Ansteuerung
 - Interruptverarbeitung, Shared Memory
 - Hardwarenahe HLL Konstrukte

2. Ziele

3. Lehr- und Lernformen
 Vorlesungen und praktische Laborversuche

4. Leistungspunkte und Arbeitsaufwand
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

6. Voraussetzungen
 Die Module B03 (Grundlagen der Elektrotechnik), B06 (Physik) und B04 (Informatik) sollen abgeschlossen sein, die Prüfungsvorleistung zum Modul B01 (Mathematik) sollte vorliegen. Empfohlen wird der Abschluss der Module B08 (Grundlagen der Informationstechnik) und B10 (Mikroprozessoren).

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.

8. Verwendbarkeit des Moduls
 Das Modul dient innerhalb der Studienvertiefung „Automatisierung“ zur Profilbildung. Es ist in anderen Vertiefungsrichtungen im gleichen Studiengang und in verwandten ingenieurwissenschaftlichen Studiengängen als Weiterführung in die Mikroprozessortechnik geeignet.
BA19 (Aktorik und Netzwerke)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA19</td>
<td>Aktorik und Netzwerke</td>
<td>Pflicht</td>
<td>Grundlagen der Aktorik</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Netzwerke</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 V</td>
</tr>
<tr>
<td>Modulverantwortliche[r]</td>
<td>weitere Lehrende</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rücklé</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Inhalte

Aktorik:
- Typen elektrischer Maschinen, Aufbau, Wirkungsweise, Kennwerte, Eigenschaften und Anwendungen: Gleichstrom, Asynchron-, Synchronmaschine, Bürstenloser Gleichstrommotor, Schrittmotor
- Leistungselektronische Bauteile und leistungelektr. Schaltungen für Antriebe
- Steuer- und Modulationsverfahren für leistungselektronische Schaltungen

Netzwerke:
- Netzwerk Grundlagen und OSI/ISO *Schichtenmodell*
- Vertiefung OSI/ISO Level 3-4, Routing, IP, UDP, TCP
- OSI/ISO Level 5-7
- Programmierschnittstellen
- Sicherheit in Datennetzen

2. Ziele

In der Vorlesung Aktorik sollen die Studierenden die Wirkprinzipien der gängigsten Aktoren lernen, die Komponenten auswählen und dimensionieren können. Für die Steuerung und Regelung moderner Aktoren soll die Funktion einiger elektronischer Leistungshalbleiter beherrscht werden. Bei einer Auswahl wichtiger Modulationsverfahren soll die Funktion nachvollzogen werden.

3. Lehr- und Lernformen

Vorlesungen, Selbststudium und praktische Laborversuche.

4. Leistungspunkte und Arbeitsaufwand

5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Die Klausur über den Stoff des gesamten Moduls wird zu Ende des Moduls angeboten, eine Wiederholungsprüfung findet im nächsten Semester statt. Die Prüfungsdauer beträgt 120 Minuten.

6. Voraussetzungen

Die Module B03 (Grundlagen der Elektrotechnik), B04 (Informatik) und B06 (Physik) sollen abgeschlossen sein, die Prüfungsvorleistunng zum Modul B01 (Mathematik) soll vorliegen. Empfohlen wird der Abschluss des Moduls B08 (Grundlagen der Informationstechnik).

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.

8. Verwendbarkeit des Moduls

Das Modul wird eingesetzt im Studiengang Elektrotechnik, Vertiefung Automatisierungs- und Informationstechnik. Es kann auch in anderen Vertiefungsrichtungen der Elektrotechnik oder in den Studiengängen Wirtschaftsingenieurwesen und Mechatronik eingesetzt werden.
BA20 (Sensorik und Signalverarbeitung)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA20</td>
<td>Sensorik und Signalverarbeitung</td>
<td>Pflicht</td>
<td>Sensorik und Signalverarbeitung</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sensorik und Signalverarbeitung Labor</td>
<td>3V, 1 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Schaefer Haid, Wiese

1. **Inhalte**

 Sensorik:
 - Grundbegriffe, Terminologie
 - Messung mechanischer Größen
 - Temperatur- und Wärmemessung
 - Schall- und Schwingungsmesstechnik
 - Optische Sensoren
 - Moderne Sensorprinzipien, Mikrosensoren

 Signalverarbeitung:
 - Analoge und digitale Verarbeitung von Sensorsignalen
 - Filterung, Abtastung, Bildung von Kennwerten

2. **Ziele**

 Die Studierenden sollen die Wirkprinzipien der gängigsten Sensoren kennen lernen, die Komponenten auswählen und dimensionieren können. Im Labor sollen sie praktische Erfahrungen an industriüblichen Komponenten sammeln.

3. **Lehr- und Lernformen**

 Vorlesungen, Selbststudium und praktische Laborversuche

4. **Leistungspunkte und Arbeitsaufwand**

 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**

 Die Prüfungsleistung wird in Form einer Klausur (Dauer: 90min) am Ende des Moduls abgelegt. Voraussetzung für die Teilnahme an der Prüfungsleistung ist die erfolgreiche Teilnahme am Labor. Wiederholungsmöglichkeiten für die Prüfungsleistung bestehen jeweils im Folgesemester.

6. **Voraussetzungen**

 Das Modul B03 (Grundlagen der Elektrotechnik) soll abgeschlossen sein, die Prüfungsvorleistung zum Modul B01 (Mathematik) soll vorliegen.

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**

 Das Modul wird eingesetzt im Studiengang Elektrotechnik, Vertiefung Automatisierungs- und Informationstechnik. Es kann auch in anderen Vertiefungsrichtungen der Elektrotechnik oder in den Studiengängen Wirtschaftsingenieurwesen und Mechatronik eingesetzt werden.

8. **Verwendbarkeit des Moduls**

 Das Modul erstreckt sich über ein Semester und wird im Wintersemester angeboten.
BA21 (Modellbildung und Identifikation)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 5 o. 6</th>
</tr>
</thead>
</table>
| BA21 | Modellbildung und Identifikation | Pflicht | Modellbildung und Identifikation | 5 CP
| | | | Modellbildung und Identifikation - Labor | 3 V, 1 L |

Modulverantwortliche(r) | weitere Lehrende
Kleinmann | Weber, Weigl-Seitz, Schnell

1. Inhalte
 - Zweck der Modellbildung, Begriffe und Modellklassen
 - Grundlagen der theoretischen Analyse
 - Modellierung ausgewählter linearer und nichtlinearer Systeme aus den Bereichen Elektrotechnik, Mechanik und Verfahrenstechnik
 - Simulation ausgewählter Modelle mit Matlab/Simulink
 - Verfahren und Eigenschaften der numerischen Simulation
 - Aufgaben und Einordnung der Systemidentifikation; Eigenschaften von Identifikationsverfahren
 - Identifikation im Zeitbereich mittels deterministischer Signale
 - Identifikation mittels Frequenzgangmessung
 - Identifikation mittels stochastischer Signale
 - Grundlagen von LS-, RLS- und RLSef-Verfahren
 - Schätzung der Modellordnung
 - Identifikation unter Anwendung existierender Matlab-Werkzeuge

2. Ziele
 Die Studierenden kennen die grundlegenden Begriffe und Verfahren zur Modellbildung und Identifikation. Die Studierenden können diese Verfahren auf Modellierungsprobleme anwenden, d.h. auswählen, einsetzen und bewerten.

3. Lehr- und Lernformen
 Vorlesungen und praktische Laborversuche.

4. Leistungspunkte und Arbeitsaufwand
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Die Klausur wird zum Ende des Moduls angeboten, eine Wiederholungsprüfung findet im Folgesemester statt.
 Die Prüfungsdauer beträgt 90 Minuten.
 Voraussetzung für die Teilnahme an der Prüfungsleistung „Modellbildung und Identifikation“ ist die erfolgreiche Teilnahme an den Laborübungen.

6. Voraussetzungen
 Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein. Es wird empfohlen, dass das Modul BA15 (Regelungstechnik) abgeschlossen ist.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester und wird im Wintersemester angeboten.

8. Verwendbarkeit des Moduls
 Das Modul ist auch verwendbar für andere ingenieurwissenschaftliche Studiengänge (Maschinenbau, Mechatronik, Wirtschaftsingenieurwesen).
BA22 (Einführung in die Robotik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA22</td>
<td>Einführung in die Robotik</td>
<td>Pflicht</td>
<td>Einführung in die Robotik</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Labor Einführung in die Robotik</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3V, 1 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r)
- Weigl-Seitz
- Weber

Inhalte
- Aufgaben und Grundbegriffe der Robotik
- Komponenten und Aufbau von Robotersystemen
- Homogene Transformationen
- Lage- und Bewegungsbeschreibung
- Kinematische Beschreibung von Robotern
- Transformation zwischen Roboterkoordinaten und Weltkoordinaten (Vorwärts transformation, Rückwärts transformation, Jacobi-Matrix)
- Bewegungsarten
- Grundlagen der Roboterprogrammierung
- Struktur der Regelung von Robotern
- Moderne Trends der industriellen Robotik

Ziele
Die Studierenden beherrschen die technischen und mathematischen Grundlagen der Robotik.

Lehr- und Lernformen
Vorlesungen und praktische Laborversuche

Leistungspunkte und Arbeitsaufwand
5,0 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Die Klausur wird zu Ende des Moduls angeboten, eine Wiederholungsprüfung findet im Folgesemester statt. Die Prüfungsdauer beträgt 90 Minuten.
Voraussetzung für die Teilnahme an der Prüfungsleistung „Einführung in die Robotik“ ist die erfolgreiche Teilnahme an den Laborübungen.

Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.

Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Wintersemester angeboten.

Verwendbarkeit des Moduls
Das Modul ist auch verwendbar für andere ingenieurwissenschaftliche Studiengänge, die sich mit Automatisierungstechnik beschäftigen (Maschinenbau, Mechatronik, Wirtschaftsingenieurwesen).
BA23 (Realzeitsysteme)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 5 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA23</td>
<td>Realzeitsysteme</td>
<td>Pflicht</td>
<td>Realzeitsysteme</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Labor Realzeitsysteme</td>
<td>2 V, 2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende

Schaefer Rücklé

1. Inhalte
 - Spezifikation und Analyse von Realzeitsystemen
 - Zustandsautomaten
 - Echtzeit-Betriebssysteme (RTOS)
 - Synchronisation, Kommunikation, Busanbindung

2. Ziele
 - Ziel des Moduls ist die Vermittlung von Kenntnissen zur Entwicklung Realzeitsystemen inklusive Spezifikation, Entwurf, Implementierung und Test.

3. Lehr- und Lernformen
 - Vorlesungen und Labor.

4. Leistungspunkte und Arbeitsaufwand
 - 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 - Die Prüfungsleistung wird in Form einer Klausur (Dauer: 90min) am Ende des Moduls abgelegt.
 - Voraussetzung für die Teilnahme an der Prüfungsleistung ist die erfolgreiche Teilnahme am Labor.
 - Wiederholungsmöglichkeit für die Prüfungsleistung besteht jeweils im Folgesemester.

6. Voraussetzungen
 - Die Module B03 (Grundlagen der Elektrotechnik), B06 (Physik) und B04 (Informatik) sollen abgeschlossen sein, die Prüfungsvorleistung zum Modul B01 (Mathematik) soll vorliegen.
 - Empfohlen wird der Abschluss der Module Grundlagen der Informationstechnik und Mikroprozessortechnik.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 - Das Modul erstreckt sich über ein Semester und wird im Wintersemester angeboten.

8. Verwendbarkeit des Moduls
 - Das Modul dient innerhalb der Studienvertiefung „Automatisierung“ zur Profilbildung.
 - Es ist in anderen Vertiefungsrichtungen im gleichen Studiengang und in verwandten ingenieurwissenschaftlichen Studiengängen als Weiterführung der Mikroprozessortechnik geeignet.
BA24 (Digitale Regelungstechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 5 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA24</td>
<td>Digitale Regelungstechnik</td>
<td>Pflicht</td>
<td>Digitale Regelungstechnik</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Labor Digitale Regelungstechnik</td>
<td>3 V, 1 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Weber Weigl-Seitz, Kleinmann, Freitag

1. Inhalte

- Auftreten zeitdiskreter Regelkreise, digitale Regelkreise
- Differenzengleichungen
- Beschreibung von Reihenreglern durch Differenzengleichungen
- Standardabtastregelkreis
- Quasikontinuierlicher Entwurf digitaler Regelkreise
- Beschreibung von digitalen Regelkreisen im z-Bereich
- Entwurf digitaler Regelungen im z-Bereich
- Kompensationsregler, dead-beat Regler

2. Ziele

Die Studierenden sollen digitale Regelungen realisieren und entwerfen können.

3. Lehr- und Lernformen

Vorlesungen und praktische Laborversuche

4. Leistungspunkte und Arbeitsaufwand

5,0 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

6. Voraussetzungen

Die Module B01 (Mathematik), B06 (Physik), B03 (Grundlagen der Elektrotechnik) und BA16 (Regelungstechnik) sollen abgeschlossen sein

7. Dauer, Zeitliche Gliederung und Häufigkeit des Angebots

Das Modul erstreckt sich über ein Semester und wird im Wintersemester angeboten.

8. Verwendbarkeit des Moduls

Das Modul ist auch verwendbar für andere ingenieurwissenschaftliche Studiengänge (Maschinenbau, Mechatronik, Wirtschaftsingenieurwesen).
BE20/BA25 (Automatisierungssysteme)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA25/BE20</td>
<td>Automatisierungssysteme</td>
<td>Pflicht</td>
<td>Automatisierungssysteme</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Automatisierungssysteme-Labor</td>
<td>2 V, 2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Simons Bauer

1. Inhalte
- Komponenten und Aufbau von Automatisierungssystemen
- Aufbau und Wirkungsweise von speicherprogrammierbaren Steuerungen
- SPS-Gerätetechnik
- SPS-Norm IEC 1131-3
- Einführung in die grundlegenden Programmiersprachen (AWL, KOP, FUP/FBS)
- Einführung in weiterführende Programmiersprachen (z.B. Ablaufsprache/Ablaufsteuerung und Strukturierter Text)

2. Ziele
Die Studierenden sollen mit einer speicherprogrammierbaren Steuerung Automatisierungssysteme projektieren und programmieren können.

3. Lehr- und Lernformen
Vorlesungen und praktische Laborversuche.

4. Leistungspunkte und Arbeitsaufwand
5,0 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

6. Voraussetzungen
Das Modul B03 (Grundlagen der Elektrotechnik) und B06 (Physik) soll abgeschlossen sein, die Prüfungsvorleistung zum Modul B01 (Mathematik) soll vorliegen. Weiterhin soll das Modul B04 (Informatik) abgeschlossen sein. Empfohlen werden ausreichende Kenntnisse der Module B02 (Digitaltechnik), B08 (Grundlagen der Informationstechnik), B10 (Mikroprozessortechnik) aus B13 (Grundlagen der Systemtheorie und Regelungstechnik) Grundkenntnisse der Regelungstechnik.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Sommersemester oder Wintersemester angeboten.

8. Verwendbarkeit des Moduls
 BA26 (Ingenieurwissenschaft 1)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA26</td>
<td>Ingenieurwissenschaft 1</td>
<td>Wahlpflicht</td>
<td>Lehrveranstaltungen aus Katalog BA26V</td>
<td>4 VLU</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 CP</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Prüfungsausschuss alle Lehrenden im Studiengang

1. Inhalte
 Katalog BA26:
 Siehe Modulbeschreibungen der Teilmodule

2. Ziele
 Die Studierenden sollen ihren Neigungen entsprechend weiterführende Kenntnisse im ingenieurwissenschaftlichen Bereich erwerben. Beim Seminar wird insbesondere die Fähigkeit zum Selbststudium gefördert.

3. Lehr- und Lernformen
 Vorlesungen und Labor, entsprechend der Teilmodulbeschreibung und Seminar.

4. Leistungspunkte und Arbeitsaufwand
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Jedes Teilmodul wird mit einer eigenen Prüfungsleistung gemäß seiner Modulbeschreibung geprüft. Die Modulprüfung ist erfolgreich abgeschlossen, wenn alle Prüfungsleistungen im Umfang von 5 CP der Teilmodule bestanden sind.

6. Voraussetzungen
 Siehe Modulbeschreibungen der Teilmodule.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

8. Verwendbarkeit des Moduls
 Das Modul dient als Vorbereitung für die Praxisprojekte und die Bachelor-Arbeit. Die Teilmodule können auch von Studierenden der anderen Vertiefungsrichtungen des Studienganges oder anderer technischer Studienrichtungen gewählt werden.
BA27 (Motion Control)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 5 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA27</td>
<td>Motion Control</td>
<td>Pflicht</td>
<td>Motion Control, Labor Motion Control</td>
<td>5 CP, 3 V, 1 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) | weitere Lehrende
Schnell | Weigl-Seitz, Weber

1. Inhalte
- Einordnung der Motion Control in die Automatisierungstechnik
- Beispiele von Bewegungssteuerungen
- Modellbildung und Beschreibung translatorischer und rotatorischer Bewegungssachsen
- Beschreibung ebener und räumlicher Bewegungen
- Fahrkurven für eine Gelenkbewegung
- Methoden zur Linear-, Zirkular und Splineinterpolation
- Kaskadierte Positions- und Drehzahlregelung als Einzelgelenkregelung
- Ausblick auf Mehrgelenkregelungen
- Struktur und Entwurf digitaler Lageregelungen

2. Ziele

3. Lehr- und Lernformen
Vorlesung, Laborübungen und Selbststudium.

4. Leistungspunkte und Arbeitsaufwand
5CP, 150 Stunden insgesamt, davon 60 Präsenzstunden.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik), B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein. Empfohlen werden ausreichende Kenntnisse der Module BA16 (Regelungstechnik) und BA19 (Aktorik und Netzwerke).

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Wintersemester angeboten.

8. Verwendbarkeit des Moduls
Für Studierende der Fachrichtung Automatisierungs- und Informationstechnik. Das Modul kann auch in den Studiengängen Wirtschaftsingenieurwesen und Mechatronik eingesetzt werden.
BA28 (Industrielle Datenkommunikation)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 5 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA28</td>
<td>Industrielle Datenkommunikation</td>
<td>Pflicht</td>
<td>Feldbussysteme 2,5 CP</td>
<td>2 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Feldbussysteme & Netzwerke Labor 2,5 CP</td>
<td>2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) | weitere Lehrende
Simons Rücklé

1. Inhalte
- Einsatzgebiete Industrieller Datenkommunikation
- ISO/OSI-Referenzmodell
- Grundlagen von Feldbussystemen (z.B. physikalische Medien, Bustopologien, Codierungsverfahren)
- Schnittstelle Kommunikationssystem - Anwendung
- Grundlagen Industrial Ethernet
- Beispiele für Feldbusrealisierungen, Industrial Ethernet, Drahtlose Feldbusse
- Praktische Versuche zu Feldbussen, Industrial Ethernet und Netzwerken auf Basis von TCP/IP

2. Ziele
Ziel des Moduls ist, den Studierenden die Prinzipien, den Aufbau und die Wirkungsweise der industriellen Datenkommunikation zu vermitteln. Sie können anschließend für bestehende Aufgaben Systeme zur industriellen Datenkommunikation auswählen, projizieren, konfigurieren und diagnostizieren. Außerdem kennen Sie die Charakteristika von Systemen zur industriellen Datenkommunikation, die z.B. bei der Entwicklung oder im Vertrieb von Komponenten dieser Systeme erforderlich sind.

3. Lehr- und Lernformen
Vorlesungen und praktische Laborversuche.

4. Leistungspunkte und Arbeitsaufwand
5,0 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Voraussetzung für die Teilnahme an der Prüfungsleistung Feldbussysteme ist die erfolgreiche Teilnahme an den Laborübungen. Die Klausur wird zum Ende des Moduls angeboten, eine Wiederholungsprüfung findet im Folgesemester statt. Die Prüfungsdauer beträgt maximal 90 Minuten.

6. Voraussetzungen
Die Module B03 (Grundlagen der Elektrotechnik) und B06 (Physik) sollen abgeschlossen sein, die Prüfungsvorleistung zum Modul B01 (Mathematik) soll vorliegen. Weiterhin soll das Modul B04 (Informatik) abgeschlossen sein. Es wird empfohlen, dass die Module B02 (Digitaltechnik), B08 (Grundlagen der Informationstechnik), B10 (Mikroprozessoren) und BA19 (Aktorik und Netzwerke) abgeschlossen sind. Empfohlen werden außerdem ausreichende Kenntnisse aus dem Modul BA25 (Automatisierungssysteme).

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.

8. Verwendbarkeit des Moduls
BA29 (Ingenieurwissenschaft 2)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 5 o.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA29</td>
<td>Ingenieurwissenschaft 2</td>
<td>Wahlpflicht</td>
<td>Lehrveranstaltungen aus Katalog BA26V</td>
<td>5 CP 4 VLÜ</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) | weitere Lehrende
Prüfungsausschuss | alle Lehrenden im Studiengang

1. **Inhalte**
 - Katalog BA26: Siehe Modulbeschreibungen der Teilmodule

2. **Ziele**
 - Die Studierenden sollen ihren Neigungen entsprechend weiterführende Kenntnisse im ingenieurwissenschaftlichen Bereich erwerben. Beim Seminar wird insbesondere die Fähigkeit zum Selbststudium gefördert.

3. **Lehr- und Lernformen**
 - Vorlesungen und Labor, entsprechend der Teilmodulbeschreibung und Seminar.

4. **Leistungspunkte und Arbeitsaufwand**
 - 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**
 - Jedes Teilmodul wird mit einer eigenen Prüfungsleistung gemäß seiner Modulbeschreibung geprüft. Die Modulprüfung ist erfolgreich abgeschlossen, wenn alle Prüfungsleistungen im Umfang von 5 CP der Teilmodule bestanden sind.

6. **Voraussetzungen**
 - Siehe Modulbeschreibungen der Teilmodule.

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**

8. **Verwendbarkeit des Moduls**
 - Das Modul dient als Vorbereitung für die Praxisprojekte und die Bachelor-Arbeit. Die Teilmodule können auch von Studierenden der anderen Vertiefungsrichtungen des Studienganges oder anderer technischer Studienrichtungen gewählt werden.
BA30 (Projektseminar)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA30</td>
<td>Projektseminar</td>
<td>Pflicht</td>
<td>Projektseminar</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 S</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r): weitere Lehrende

Schnell: alle Lehrenden im Studiengang

1. Inhalte

2. Ziele

3. Lehr- und Lernformen
Gruppenarbeit sowie wöchentliche Seminartreffen zur Diskussion des aktuellen Projektstatus und Planung der weiteren Vorgehensweise.

4. Leistungspunkte und Arbeitsaufwand
5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Bei diesem Seminar erfolgt eine Bewertung der Bearbeitung des gewählten Seminarthemas auf Basis der erstellten Dokumentation (Bericht für theoretische Arbeit oder technische Beschreibung für praktisches Thema) sowie der Abschlusspräsentation.

6. Voraussetzungen
Keine.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul dient als Vorbereitung für das Praxisprojekt und die Bachelor-Arbeit.
Modulhandbuch

Bachelor of Engineering
Elektrotechnik und Informationstechnik

Wahlpflichtkatalog BA26V
BA26V01 (Elektromagnetische Verträglichkeit (EMV))

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 5/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA26V01</td>
<td>Elektromagnetische Verträglichkeit (EMV)</td>
<td>Wahlpflicht</td>
<td>s. Teilmodulname</td>
<td>2.5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Gaspard

1. Inhalte:
 - Einführung, Elektromagnetische Verträglichkeit – Elektromagnetische Beeinflussung
 - Gegentakt- und Gleichtaktstörungen
 - Störpegel und Störabstand, Beschreibung im Zeit- und Frequenzbereich
 - Störquellen
 - Koppelmechanismen und Gegenmaßnahmen
 - Passive Entstörkomponenten
 - EMV-Emissionsmesstechnik
 - EMV-Störfestigkeitsprüftechnik
 - Simulation in der EMV
 - Normen und Vorschriften
 - Exemplarische EMV-Probleme aus verschiedenen Bereichen

2. Ziele
 Die Studierenden sollen Kenntnisse im Bereich der elektromagnetischen Störemission und Störfestigkeit sowie der zugrundeliegenden Simulations- und Messtechnik sowie Normen erlangen.

3. Lehr- und Lernformen
 Vorlesung.

4. Leistungspunkte und Arbeitsaufwand
 2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Eine Klausur wird zum Ende des Moduls angeboten, eine Wiederholungsprüfung findet zu Beginn des folgenden Semesters statt. Die Prüfungsdauer beträgt 90 Minuten.

6. Voraussetzungen
 Empfohlen werden ausreichende Kenntnisse aus den Modulen B03 [Grundlagen der Elektrotechnik], B01 [Mathematik] und B06 [Physik].

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester.
 Lehrveranstaltung „Elektromagnetische Verträglichkeit“: 2 SWS Vorlesung.

8. Verwendbarkeit des Moduls
 Das Modul eignet sich als Basis für Praxisprojekte und Bachelor-Arbeiten. Darüber hinaus ist es in anderen Vertiefungsrichtungen im gleichen Studiengang und in verwandten ingenieurwissenschaftlichen Studiengängen (z.B. Automatisierungs- und Informationstechnik, Energie, Elektronik und Umwelt, Kommunikationstechnologie, Wirtschaftsingenieurwesen, usw.) als einführendes Modul im Bereich der Elektromagnetischen Verträglichkeit verwendbar.
BA26V02 (Einsatz von Visualisierungssystemen für technische Systeme)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA26V02</td>
<td>Einsatz von Visualisierungssystemen für technische Systeme</td>
<td>Wahlpflicht</td>
<td>Einsatz von Visualisierungssystemen für technische Systeme</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 V+1L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Simons Haid

1. Inhalte
 - Einführung in Visualisierungssysteme für technischer Prozesse
 - Methoden der Prozessvisualisierung
 - Normen & Standards von Visualisierungssystemen
 - Basis-Parameter von Visualisierungssystemen (z. B. Kommunikationswege, Bildaufbauzeiten, Aktualisierungszeiten für Variablen)
 - Schnittstellen zu Automatisierungssystemen (u. a. OPC)
 - Bedien- und Beobachtungskonzepte
 - Aufbau einer Visualisierungs-Software (z.B. WinCC)
 - Realisierung einer Aufgabe mit einem vorhandenen Visualisierungssystem (z.B. WinCC)

2. Ziele

3. Lehr- und Lernformen
 Vorlesungen und praktische Laborversuche.

4. Leistungspunkte und Arbeitsaufwand
 2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

6. Voraussetzungen
 Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.
 Es wird empfohlen, dass die Module, B02 (Digitaltechnik), B08 (Grundlagen der Informationstechnik), B10 (Mikroprozessoren) und BA19 (Aktork und Netzwerke) und BA20 (Sensorik und Signalverarbeitung) abgeschlossen sind. Empfohlen werden außerdem ausreichende Kenntnisse aus dem Modul BA25 (Automatisierungssysteme).

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.

8. Verwendbarkeit des Moduls
 Das Modul dient innerhalb der Automatisierung zur Vertiefung. Es ist für alle Studiengänge oder Vertiefungen geeignet, bei denen die Visualisierung von technischen Prozessen erforderlich ist.
BA26V03 (Prozessleitsysteme)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA26V03</td>
<td>Prozessleitsysteme</td>
<td>Wahlpflicht (Teilmodul des Wahlpflichtkataloges BA26V)</td>
<td>Prozessleitsysteme</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende

Simons

1. **Inhalte**
 - Grundlagen verfahrenstechnischer Prozesse
 - Prozessmesstechnik und -aktorik
 - Prozessdarstellung (R&I-Schema, Fließbild, Ablaufdiagramm, Messstellenplan)
 - Prozessanalyse (Batch- und Chargenprozesse, kontinuierliche Prozesse)
 - Prozessleitsysteme (u.a. SCADA Topologien, Funktionen, Kriterien für die Auswahl, Bedienkonzepte)
 - Datenerfassung und -archivierung (u.a. Feldbusse, OPC)
 - Normen- und Richtlinien
 - Asset-Management-Systeme und Parametrierwerkzeuge

2. **Ziele**

3. **Lehr- und Lernformen**
 Vorlesungen und praktische Übungen mit einem Prozessleitsystem.

4. **Leistungspunkte und Arbeitsaufwand**
 2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**
 Voraussetzung für die Teilnahme an der Prüfungsleistung Prozessleitsysteme ist die erfolgreiche Teilnahme an den praktischen Übungen. Die Prüfung (schriftlich oder mündlich) wird zu Ende des Semesters angeboten, eine Wiederholprüfung findet im Folgesemester statt. Die Prüfungsort (schriftlich oder mündlich) wird zu Beginn der Veranstaltung festgelegt und den Studierenden bekannt gegeben.

6. **Voraussetzungen**
 Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.
 Es wird empfohlen, dass die Module, B02 (Digitaltechnik), B08 (Grundlagen der Informationstechnik), B10 (Mikroprozessoren) und BA19 (Aktorik und Netzwerke) und BA20 (Sensorik und Signalverarbeitung) abgeschlossen sind. Empfohlen werden außerdem ausreichende Kenntnisse aus dem Modul BA25 (Automatisierungssysteme).

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**
 Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.

8. **Verwendbarkeit des Moduls**
 Das Modul dient innerhalb der Automatisierung zur Vertiefung. Es ist für alle Fachrichtungen geeignet, bei denen vernetzte Leitsysteme eingesetzt werden.
BA26V04 (Spielrobotik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA26V04</td>
<td>Spielrobotik</td>
<td>Wahlpflicht (Teilmodul des Wahlpflichtkataloges BA26V)</td>
<td>Spielrobotik</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 V + 1 Ü</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Schnell

1. Inhalte
 - Einführung die Spielrobotik;
 - Einführung in die Entwicklungs- und Programmierumgebung;
 - Anwendungen für Spielroboter,
 - Bauformen von Spielrobotern,
 - Einführung in den Aufbau der Lego Mindstorms NXT Roboter,
 - Angewandte Programmierung,
 - Praktische Umsetzung von Beispielapplikationen.

2. Ziele

3. Lehr- und Lernformen
 Vorlesung und Übung. (Eine Übungsgruppe umfasst maximal 20 Studierende.)

4. Leistungspunkte und Arbeitsaufwand
 2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Die Prüfung wird zum Ende des Semesters angeboten, eine Wiederholprüfung findet zum Beginn des nächsten Semesters statt. Die Prüfungsform (schriftlich oder mündlich) wird zu Beginn der Veranstaltung festgelegt und den Studierenden bekannt gegeben.

6. Voraussetzungen
 Keine.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Die Lehrveranstaltung wird im Sommersemester angeboten.

8. Verwendbarkeit des Moduls
 Das Modul ist für alle Ingenieur-Studiengänge verwendbar.
BA26V05 (Skriptsprachen)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4/5/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA24V05</td>
<td>Skriptsprachen</td>
<td>Wahlpflicht (Teilmodul des Wahlpflichtkataloges BA26V)</td>
<td>Skriptsprachen - Labor</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 V, 1 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende

Rücklé

1. Inhalte
 - Überblick und Einsatzbereiche
 - GUI in Skriptsprachen
 - Datenbanken und Netzwerk
 - Webengineering

2. Ziele
 Ziel des Moduls ist die Vermittlung von Kenntnissen zum Einsatz Skriptsprachen, inklusive Spezifikation und Grenzen.

3. Lehr- und Lernformen
 Vorlesungen und praktische Laborversuche.

4. Leistungspunkte und Arbeitsaufwand
 2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

6. Voraussetzungen
 Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein. Empfohlen wird auch der Abschluss der Module B04 (Informatik), B08 (Informationstechnik) sowie BA19 (Aktorik und Netzwerke).

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester.

8. Verwendbarkeit des Moduls
 Das Modul dient innerhalb der Studienvertiefung „Automatisierung“ zur Profilbildung. Es ist in anderen Vertiefungsrichtungen im gleichen Studiengang und in verwandten ingenieurwissenschaftlichen Studiengängen als Weiterführung zur Programmierung geeignet.
BA26V06 (Embedded Software)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4/5/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA24V06</td>
<td>Embedded Software</td>
<td>Wahlpflicht (Teilmodul des Wahlpflichtkataloges BA26V)</td>
<td>Embedded Software Labor Embedded Software</td>
<td>2,5 CP 1 V, 1 L</td>
</tr>
</tbody>
</table>

Modulverantwortlicher: weitere Lehrende

1. Inhalte
- Vektoren, assoziative und mehrdimensionale Arrays, Listenverarbeitung
- Unterschiede Mikrocontroller Programmierung in C,C++, Java
- Bibliotheksfunktionen, Vererbung, Klassenhierarchien
- Asynchrone I/O
- GUI

2. Ziele

3. Lehr- und Lernformen
Vorlesungen und praktische Laborversuche.

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein. Empfohlen wird auch der Abschluss der Module B04 (Informatik), B08 (Informationstechnik) sowie BA19 (Aktorik und Netzwerke).

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester.

8. Verwendbarkeit des Moduls
Das Modul dient innerhalb der Studienvertiefung „Automatisierung“ zur Profilbildung. Es ist in anderen Vertiefungsrichtungen im gleichen Studiengang und in verwandten ingenieurwissenschaftlichen Studiengängen als Weiterführung zu der Mikroprozessortechnik geeignet.
BA26V07 (Technologie)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4/5/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA26V07</td>
<td>Technologie</td>
<td>Wahlpflicht Teilmodul des Wahlpflichtkataloges BA26V</td>
<td>Halbleitertechnologie</td>
<td>2.5 CP 2 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende: Hoppe

1. Inhalte

- Physikalische Grundlagen: Silizium als kristalliner Festkörper (Chemische Bindung, Kristallaufbau, Bandstruktur, Leitungsmechanismen, Datierbarkeit)
- Bauelemente (Diode, MOS-Transistor, Kontakte, Leitbahnen)
- Herstellverfahren (Waferherstellung, Schichtabscheidung, Schichtstrukturierung, Lithografie)
- Zuverlässigkeit, Ausfallmechanismen, Testmethoden
- Mikrosystemtechnik (Sensoren, Aktoren, mechanische, optische und chemische Funktionen)

2. Ziele

In dieser Vorlesung werden die Grundlagen der modernen Technologien behandelt, auf denen Elektronik im weitesten Sinne beruht. Der wichtigste Trend in Wissenschaft und Technik ist die kontinuierliche Verkleinerung der Grundkomponenten (Mooresches Gesetz), die dann zu immer komplexeren und leistungsfähigeren Systemen zusammengesetzt werden können.

3. Lehr- und Lernformen

- Vorlesungen

4. Leistungspunkte und Arbeitsaufwand

2.5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Die Klausur wird zum Ende des Teilmoduls angeboten, eine Wiederholungsklausur findet im Folgesemester statt. Die Prüfungsdauer beträgt 90 Minuten.

6. Voraussetzungen

Die Module B01 (Mathematik), B02 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Das Modul erstreckt sich über ein Semester.

8. Verwendbarkeit des Moduls

Das Modul ist ein Wahlpflichtmodul, das die Studienangebote auf das Berufsfeld Elektronik-Design abrundet und auf den konsekutiven Master-Studiengang vorbereitet.
BA26V08 (VHDL/VHDL-AMS)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA26V08</td>
<td>VHDL/VHDL-AMS</td>
<td>Wahlpflicht (Teilmodul des Wahlpflichtkataloges BA26V)</td>
<td>VHDL/VHDL-AMS Labor VHDL/VHDL-AMS</td>
<td>2,5 CP 1 V, 1 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Hoppe Schumann

1. Inhalte
 Lehrveranstaltung Hardwarebeschreibungssprachen:
 - Lösung von einfachen und komplexeren Modellierungsaufgaben für Digitalsysteme (De- und Encoder, Zustandsautomat, Multiplizierer)
 - Konzepte für Digital- und Analogsimulation (Diskret bzw. kontinuierlich in Zeit und Amplitude)
 - Analog Modellierungsaufgaben (Schmitt-Trigger, OpAmp)
 Gemischte Systeme (AD-Wandler nach dem Wägeverfahren, Diode mit Wärmeentwicklung)

2. Ziele
 In dieser Veranstaltung werden Hardwarebeschreibungsprachen (HDLs, *Hardware Description Languages*) behandelt. Der wichtigste Vertreter dieser Sprachen in Europa ist VHDL mit der analogen Erweiterung VHDL-AMS (Analog Mixed Signal). HDLs sind heute das primäre Designeingabemedium für die digitale Logiksynthese. VHDL-AMS ist noch eine reine Beschreibungssprache. Bedeutung hat die Sprache, weil hier auch analog arbeitende heterogene Systeme (elektro-optisch, elektro-mechanisch, etc.) zusammen mit komplexer digitaler Logik simuliert werden können.

3. Lehr- und Lernformen
 Vorlesung und Laborübungen mit Modelsim von XILINX, SystemVision und SMASH-DOLPHIN

4. Leistungspunkte und Arbeitsaufwand
 2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Die Klausur wird zum Ende des Teilmoduls angeboten, eine Wiederholungsklausur findet zu Beginn des Folgesemesters statt. Die Prüfungsdauer beträgt 90 Minuten.

6. Voraussetzungen
 Die Module B01 (Mathematik), B02 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.
 Kenntnisse der Sprache C oder PASCAL sind vorteilhaft.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Die Lehrveranstaltung wird im Sommersemester angeboten.

8. Verwendbarkeit des Moduls
 Das Modul ist ein Wahlpflichtmodul, das die Studienangebote für das Berufsfeld Elektronik-Design abrundet und auf den konsekutiven Master-Studiengang vorbereitet.
BA26V09 (Regelung von Roboterarmen)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA26V09</td>
<td>Regelung von Roboterarmen</td>
<td>Wahlpflicht</td>
<td>Regelung von Roboterarmen</td>
<td>3,75 CP</td>
</tr>
<tr>
<td></td>
<td>(Teilmodul zu BA26)</td>
<td></td>
<td></td>
<td>3 V</td>
</tr>
<tr>
<td></td>
<td>Labor Regelung von Roboterarmen</td>
<td>1,25 CP</td>
<td></td>
<td>1L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Weber Weigl-Seitz

1. **Inhalte**
 - Aufgaben der Achsregelung von Robotern und anderen Mehrachssystemen
 - Prinzipielle Strukturen von Lageregelungen
 - Streckenmodell einer Achsregelung
 - Entwurf einer dezentralen Geschwindigkeitsregelung
 - Messwertgewinnung und Messwertvorverarbeitung
 - Berücksichtigung der Flexibilität des Antriebsstranges
 - Adaptive Gelenkregelungen
 - Einsatzgebiete und Methoden der Kraftregelung
 - Ausblick auf fortgeschrittene Roboterregelungen

2. **Ziele**
 Ziel des Moduls ist es, die Studierenden zu befähigen, eine Gelenkregelung für Roboter und andere Mehrgrößensysteme zu realisieren und einen ersten Einblick in Kraftregelungen und fortgeschrittene Roboterregelungen zu geben.

3. **Lehr- und Lernformen**
 Vorlesungen und praktische Laborversuche

4. **Leistungspunkte und Arbeitsaufwand**
 5,0 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**

6. **Voraussetzungen**
 Die Module B01(Mathematik), B06(Physik), BA16(Regelungstechnik) und BA22 (Einführung in die Robotik) sollten abgeschlossen sein.

7. **Dauer, Zeitliche Gliederung und Häufigkeit des Angebots**
 Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.

8. **Verwendbarkeit des Moduls**
 Das Modul ist auch verwendbar für andere ingenieurwissenschaftliche Studiengänge, die sich mit Automatisierungstechnik beschäftigen (Maschinenbau, Mechatronik).
BA26V10 (Prozess- und Produktqualität in der Software Entwicklung)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltung</th>
<th>Sem. 5/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA26V10</td>
<td>Prozess- und Produktqualität in der Softwareentwicklung</td>
<td>Wahlpflicht (Teilmodul des Wahlpflichtkataloges BA26V)</td>
<td>Prozess- und Produktqualität in der Software Entwicklung</td>
<td>2,5 CP 2 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) Weitere Lehrende
Fromm Kleinmann, Schaefer

1. Inhalte
- Einführung Prozess- und Produktqualität
- CMMi und Spice
- Qualitätsanforderungen an Software und deren Umsetzung in Design und Code
- Design- und Codierungsmuster, Codierungsstandards (MISRA...), Codemetriken
- Einsatz von Werkzeugen zur Statischen Codeanalyse
- Einsatz von Werkzeugen zur Berechnung von Metriken
- Einsatz von Werkzeugen zur Messung der Testabdeckung
- Besondere Anforderungen sicherheitskritischer Software
- Praktische Fallbeispiele

2. Ziele
Die Studierenden lernen die spezifischen Anforderungen und Standards im Bereich der Prozess- und Produktqualität in modernen Entwicklungsprojekten kennen und sind in der Lage, ein Softwareprojekt nach diesen Standards zu planen und durchzuführen.

3. Lehr- und Lernformen
Vorlesungen.

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 75 Stunden insgesamt, davon 30h Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Die Klausur wird zu Ende des Semesters angeboten, eine Wiederholprüfung findet zu Beginn des nächsten Semesters statt. Die Prüfungsdauer beträgt 90 Minuten.

6. Voraussetzungen
Empfohlen wird der Abschluss der Module B08 Grundlagen der Informationstechnik und BA17/BE17 Software Engineering.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester.

8. Verwendbarkeit des Moduls
Das Modul dient innerhalb der Studienvertiefung „Automatisierung“ zur Profilbildung. Es ist in anderen Vertiefungsrichtungen im gleichen Studiengang und in verwandten ingenieurwissenschaftlichen Studiengängen als Weiterführung zur Programmierung geeignet.
BA26V11 (Automotive Software)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltung</th>
<th>Sem. 5/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA26V11</td>
<td>Automotive Software</td>
<td>Wahlpflicht [Teilmodul des Wahlpflichtkataloges BA26V]</td>
<td>Automotive Software</td>
<td>2,5 CP 2 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r): Weitere Lehrende

Fromm

1. Inhalte
- Einsatz von Microcontrollern in der Automobilindustrie
- Entwicklung von automotive Architekturen
- Automotive Betriebsysteme
- Digitale und analoge Peripheriebausteine
- Einfache Kommunikationsbausteine
- Netzwerke
- Human Machine Interface / Einsatz von Grafik
- Umweltanforderungen (EMV, Temperatur,..)

2. Ziele
Die Studierenden lernen die spezifischen Basis-Technologien für die Entwicklung automobiler Software und Steuergeräte kennen.

3. Lehr- und Lernformen
Vorlesungen.

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 75 Stunden insgesamt, davon 30h Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Die Klausur wird zu Ende des Semesters angeboten, eine Wiederholprüfung findet zu Beginn des nächsten Semesters statt. Die Prüfungsdauer beträgt 90 Minuten.

6. Voraussetzungen
Empfohlen wird der Abschluss des Moduls B08 Grundlagen der Informationstechnik.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester.

8. Verwendbarkeit des Moduls
Das Modul dient innerhalb der Studienvertiefung „Automatisierung“ zur Profilbildung. Es ist in anderen Vertiefungsrichtungen im gleichen Studiengang und in verwandten ingenieurwissenschaftlichen Studiengängen als Weiterführung zur Programmierung geeignet.
Modulhandbuch

Bachelor of Engineering
Elektrotechnik und Informationstechnik

Module des Vertiefungsstudiums Energie, Elektronik und Umwelttechnik
BE16 (Regelungstechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE16</td>
<td>Regelungstechnik</td>
<td>Pflicht</td>
<td>Regelungstechnik</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Regelungstechnik-Labor</td>
<td>3 V, 1 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende

Freitag Weigl-Seitz, Wagner, Weber

1. Inhalte
 - Vertiefung der Aufgaben und Grundbegriffe der Regelungstechnik
 - Entwurf linearer Regelkreise im Zeitbereich
 - Entwurf linearer Regelkreise im Frequenzbereich
 - Wurzelortskurvenverfahren
 - Nichtlineare Regler
 - Vermaschte Regelungen (Störgrößenaufschaltung, Kaskadenregelung, Vorsteuerung)
 - Einführung in die Beschreibung und Regelung im Zustandsraum
 - Grundlagen der digitalen Regelungstechnik
 - Anwendung rechnergestützter Werkzeuge für die Simulation und Analyse von Regelkreisen

2. Ziele
 Die Studierenden beherrschen die Grundlagen der Analyse und Synthese von Regelungssystemen.

3. Lehr- und Lernformen
 Vorlesung und praktische Laborversuche.

4. Leistungspunkte und Arbeitsaufwand
 5,0 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

6. Voraussetzungen
 Das Modul B03 (Grundlagen der Elektrotechnik) und B06 (Physik) soll abgeschlossen sein, die Prüfungsvorleistung zum Modul B01 (Mathematik) soll vorliegen. Dringend empfohlen werden ausreichende Kenntnisse der Module B12 (Simulation technischer Systeme) und B13 (Grundlagen der Systemtheorie und Regelungstechnik)

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.

8. Verwendbarkeit des Moduls
 Das Modul dient innerhalb des Studiengangs als Basis für eine Reihe weiterer Module des Vertiefungsstudiengangs. Das Modul vermittelt Basiswissen der Regelungstechnik und ist verwendbar für andere ingenieurwissenschaftliche Studiengänge, die sich mit Regelungstechnik beschäftigen (Maschinenbau, Mechatronik, Energiewirtschaft und Wirtschaftsingenieurwesen).
BA17/BE17 (Software Engineering)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA17/BE17</td>
<td>Software Engineering</td>
<td>Pflicht</td>
<td>Software Engineering</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Software Engineering - Labor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche(r)</th>
<th>weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kleinmann</td>
<td>Fromm, Lipp</td>
</tr>
</tbody>
</table>

1. Inhalte

- Motivation für das Software Engineering
- Prozessmodelle
- Requirements Engineering
- Software-Modellierung und -Entwurf mit UML (Unified Modeling Language)
- Systematischer Software-Test
- Software-Dokumentation
- Software-Auslieferung und -Inbetriebnahme
- Software-Wartung und -Evolution
- Kurzeinführung/Verbindung zu Querschnittsthemen
 - Konfigurationsmanagement
 - Software-Qualität und -Standards
 - Software-Projektmanagement

2. Ziele

3. Lehr- und Lernformen

Vorlesungen und praktische Laborversuche

4. Leistungspunkte und Arbeitsaufwand

5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Die Klausur wird zum Ende des Moduls angeboten, eine Wiederholungsprüfung findet im Folgesemester statt.
Die Prüfungsdauer beträgt 90 Minuten.
Voraussetzung für die Teilnahme an der Prüfungsleistung „Software Engineering“ ist die erfolgreiche Teilnahme an den Laborübungen.

6. Voraussetzungen

Das Modul B04 (Informatik) muss abgeschlossen sein. Es wird empfohlen, dass das Modul B08 (Grundlagen der Informationstechnik) abgeschlossen ist.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Das Modul erstreckt sich über ein Semester und wird im Sommer- und im Wintersemester angeboten.

8. Verwendbarkeit des Moduls

Das Modul ist ein zentraler Baustein der informationstechnischen Ausbildung von Ingenieuren. Es unterstützt weiterhin die Vorbereitung für das Praxisprojekt und die Bachelor-Arbeit. Es ist auch in anderen Vertiefungsrichtungen im gleichen Studiengang sowie in verwandten ingenieurwissenschaftlichen Studiengängen (z.B. Maschinenbau, Mechatronik) verwendbar.
BE18 (Elektrische Maschinen 1)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE18</td>
<td>Elektrische Maschinen 1</td>
<td>Pflicht</td>
<td>Elektrische Maschinen 1</td>
<td>5,0 CP 4 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Wagner Michel, Bauer, Schmidt-Walter

1. Inhalte
- Grundlagen der elektrischen Maschinen, Vorschriften
- Gleichstrommaschine, eine erste Einführung
- Transformator, Aufbau, Ersatzschaltbild, Spannungsgleichungen
- Allgemeines zum Drehfeld, Entstehung des Drehfeldes, Drehstromwicklungen
- Asynchronmaschinen, Aufbau und Funktion, Ersatzschaltbild u. Spannungsgleichungen, Motor- u. Generatorbetrieb, Drehzahlsteuerung

2. Ziele

3. Lehr- und Lernformen
Vorlesungen, Selbststudium.

4. Leistungspunkte und Arbeitsaufwand
5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Prüfungsleistung in Form einer Klausur (Dauer: 90 Minuten) über den gesamten Lehrinhalt des Moduls am Ende des Semesters, Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester.

6. Voraussetzungen
Das Modul B03 (Grundlagen der Elektrotechnik) und B06 (Physik) soll abgeschlossen sein, die Prüfungsvorleistung zum Modul B01 (Mathematik) soll vorliegen.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird in der Regel im Sommersemester angeboten.

8. Verwendbarkeit des Moduls
Für Studierende der Fachrichtung Energie, Elektronik und Umwelttechnik, Teile des Moduls können auch in den Studiengängen Automatisierungs- und Informationstechnik und Mechatronik eingesetzt werden.
BE19 (Leistungselektronik 1)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE19</td>
<td>Leistungselektronik 1</td>
<td>Pflicht</td>
<td>Leistungselektronik 1</td>
<td>5,0 CP 4V</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r)

<table>
<thead>
<tr>
<th>weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michel Bauer, Schmidt-Walter, Wagner</td>
</tr>
</tbody>
</table>

1. **Inhalte**

- Leistungselektronische Bauteile, ihre statischen und dynamischen Kennwerte und ihre Ansteuerung,
- Wechsel- und Drehstromsteller,
- Netzgeführte Schaltungen, ihre Kombinationen und ihre Anwendungen: Mittelpunkt- und Brückenschaltungen, Umkehrstromrichter, Direktumrichter.
- Netznachwirkungen: Blindleistung und Harmonische, Abhilfemaßnahmen,
- Selbstgeführte Schaltungen: Hochsetz-, Tiefsetz-, 4Q-Steller und Inverswandler
- Drehstromumrichter (U-Umrichter)
- Steuerverfahren für Leistungselektronik

2. **Ziele**

Die Studierenden sollen die Methoden der Leistungselektronik, die wichtigsten Leistungshalbleiter, die gebräuchlichsten Schaltungen und ihre Anwendungen kennen lernen. Sie sollen in der Lage sein, leistungselektronische Schaltungen zu analysieren, zu beurteilen und zu dimensionieren.

3. **Lehr- und Lernformen**

Vorlesungen, Selbststudium.

4. **Leistungspunkte und Arbeitsaufwand**

5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**

Prüfungsleistung in Form einer Klausur (Dauer: 90 Minuten) über den gesamten Lehrinhalt des Moduls am Ende des Semesters, Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester.

6. **Voraussetzungen**

Das Modul B03 (Grundlagen der Elektrotechnik) und B06 (Physik) soll abgeschlossen sein, die Prüfungsvorleistung zum Modul B01 (Mathematik) muss vorliegen.

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**

Das Modul erstreckt sich über ein Semester, Leistungselektronik 1 wird in der Regel im Sommersemester angeboten.

8. **Verwendbarkeit des Moduls**

Für Studierende der Fachrichtung Energie, Elektronik und Umwelttechnik, Teile des Moduls können auch in den Studiengängen Automatisierungs- und Informationstechnik und Mechatronik eingesetzt werden.
BE20/BA25 (Automatisierungssysteme)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA25/BE20</td>
<td>Automatisierungssysteme</td>
<td>Pflicht</td>
<td>Automatisierungssysteme</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Automatisierungssysteme-Labor</td>
<td>2 V, 2 L</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>weitere Lehrende</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simons</td>
<td>Bauer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Inhalte
- Komponenten und Aufbau von Automatisierungssystemen
- Aufbau und Wirkungsweise von speicherprogrammierbaren Steuerungen
- SPS-Geräteotechnik
- SPS-Norm IEC 1131-3
- Einführung in die grundlegenden Programmiersprachen (AWL, KOP, FUP/FBS)
- Einführung in weiterführende Programmiersprachen (z.B. Ablaufsprache/
 Ablaufsteuerung und Strukturierter Text)

2. Ziele
Die Studierenden sollen mit einer speicherprogrammierbaren Steuerung Automatisierungssysteme projektieren und programmieren können.

3. Lehr- und Lernformen
Vorlesungen und praktische Laborversuche.

4. Leistungspunkte und Arbeitsaufwand
5.0 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

6. Voraussetzungen
Das Modul B03 (Grundlagen der Elektrotechnik) und B06 (Physik) soll abgeschlossen sein, die Prüfungsvorleistung zum Modul B01 (Mathematik) muss vorliegen.
Weiterhin muss das Modul B04 (Informatik) abgeschlossen sein.
Empfohlen werden ausreichende Kenntnisse der Module B02 (Digitaltechnik), B08 (Grundlagen der Informationstechnik), B10 (Mikroprozessoren), und aus B09 (Methoden der Elektrotechnik) erste Grundkenntnisse der Regelungstechnik.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Sommersemester oder Wintersemester angeboten.

8. Verwendbarkeit des Moduls
BE21 (Energieversorgung)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE21</td>
<td>Energieversorgung</td>
<td>Pflicht</td>
<td>Energieversorgung</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Petry

1. Inhalte
- Wirkungsweise und Aufbau von Drehstromsystemen
- Leistungen im Drehstromsystem
- Netzstrukturen und Spannungsebenen im Energieversorgungsnetz
- Aufbau und Kenngrößen von Freileitungen und Kabeln
- Berechnung von Leitungen im ungestörten Betrieb
- Dreipoliger Kurzschluss
- Symmetrische Komponenten und unsymmetrische Kurzschlüsse
- Sternpunktbehandlung und Erdschluss

2. Ziele

3. Lehr- und Lernformen
Vorlesung mit integrierten Übungen,

4. Leistungspunkte und Arbeitsaufwand
5,0 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsduar und Prüfungsvoraussetzung
Die Klausur wird zum Ende des Moduls angeboten, eine Wiederholungsprüfung findet im folgenden Semester statt. Die Prüfungsdauer beträgt 90 Minuten.

6. Voraussetzungen
Die Module und B02 (Physik) und B03 (Grundlagen der Elektrotechnik) müssen abgeschlossen sein, die Prüfungsvorleistung zum Modul B01 (Mathematik) muss vorliegen.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul kann auch als Wahlpflichtmodul für die Studiengänge Energiewirtschaft und Wirtschaftsingenieurswesen verwendet werden.
BE22 (Elektrische Maschinen und Leistungselektronik-Labor)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 5 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE22</td>
<td>Elektrische Maschinen 1 und Leistungselektronik-Labor</td>
<td>Pflicht</td>
<td>Elektrische Maschinen-Labor 2,5 CP 2L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leistungselektronik-Labor 2,5 CP 2L</td>
<td></td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Wagner Michel, Bauer, Schmidt-Walter

1. **Inhalte**
 - Laborversuche zur Gleichstrom, Asynchron-, Synchronmaschine, Drehstromtransformator und Drehzahlstellung und -regelung
 - Laborversuche zu Bauteilen, netzgeführten Stromrichtern, selbstgeführten Stromrichtern, Wechsel/Drehstromsteller und Solarwechselrichtern

2. **Ziele**
 Die Studierenden sollen die in den zugehörigen Theoriemodulen kennengelernten elektrischen Maschinentypen und Schaltungen der Leistungselektronik in verschiedenen Experimenten verifizieren und ihre Kenntnisse weiter vertiefen.

3. **Lehr- und Lernformen**
 Labor, Selbststudium.

4. **Leistungspunkte und Arbeitsaufwand**
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**
 Prüfungsleistung in Form einer Klausur (Dauer: 90 Minuten) über den gesamten Lehrinhalt des Moduls am Ende des Semesters, Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester.

6. **Voraussetzungen**
 Die Module B03 (Grundlagen der Elektrotechnik) und B06 (Physik) sollen abgeschlossen sein, die Prüfungsvorleistung zum Modul B01 (Mathematik) soll vorliegen.

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**
 Das Modul erstreckt sich über ein Semester, das Modul wird in der Regel im Wintersemester angeboten.

8. **Verwendbarkeit des Moduls**
 Für Studierende der Fachrichtung Energie, Elektronik und Umwelttechnik, Teile des Moduls können auch in den Studiengängen Automatisierungs- und Informationstechnik und Mechatronik eingesetzt werden.
BE23 (Elektrische Maschinen 2 und Leistungselektronik 2)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 5 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elektrische Maschinen 2 und Leistungselektronik-</td>
<td>Pflicht</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Elektrische Maschinen 2</td>
<td>2,5 CP 2V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leistungselektronik 2</td>
<td>2,5 CP 2V</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>weitere Lehrende</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wagner</td>
<td>Michel, Bauer, Schmidt-Walter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Inhalte
- Gleichstrommaschinen, spezielle Aufbauten, Drehzahlsteuerungsmethoden
- Antriebstechnik Bestimmung von Arbeitspunkten, statische Stabilität, Methoden der Drehzahlsteuerung
- Selbstgeführte Schaltungen: Lückbetrieb bei Tiefsetz-, Hochsetzsteller und Inverswandler, und Mehrquadrantensteller
- Auswahl aus weiteren häufig verwendeten Schaltungen wie z.B. I-Umrichter, CuK, resonante und quasiresonante Schaltungen,
- Multilevelumrichter.
- potenzialgetrennte Schaltnetzteile.
- Beispiele von Anwendungen in der Antriebstechnik, in elektrischen Netzen (HGÜ und HGÜ light) und in Stromversorgungen.

2. Ziele
Die Studierenden sollen die Funktion weiterer elektrischer Maschinen kennen lernen und in ihre Anwendungen eingeführt werden. Sie sollen in der Lage sein, wichtige Kenngrößen der elektrischen Maschinen zu ermitteln und für antriebstechnische Aufgaben verwenden können. Im Teil der Leistungselektronik 2 sollen sie insbesondere selbstgeführte Schaltungen kennenlernen und in die Anwendung der Leistungselektronik in der Antriebstechnik und der elektrischen Energieübertragung eingeführt werden.

3. Lehr- und Lernformen
Vorlesungen, Selbststudium.

4. Leistungspunkte und Arbeitsaufwand
5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Prüfungsleistung in Form einer Klausur [Dauer: 90 Minuten] über den gesamten Lehrinhalt des Moduls am Ende des Semesters, Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester.

6. Voraussetzungen

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester, das Modul wird in der Regel im Wintersemester angeboten.

8. Verwendbarkeit des Moduls
Für Studierende der Fachrichtung Energie, Elektronik und Umwelttechnik, Teile des Moduls können auch in den Studiengängen Automatisierungs- und Informationstechnik und Mechatronik eingesetzt werden.
BE24 (Datenkommunikation, Leittechnik und Netzbetrieb für Energienetze)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE24</td>
<td>Datenkommunikation, Leittechnik und Netzbetrieb für Energienetze</td>
<td>Pflicht</td>
<td>Datenkommunikation 2,5 CP</td>
<td>2 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leittechnik und Netzbetrieb für Energienetze</td>
<td>1,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Metz Bauer

1. Inhalte
 Datenkommunikation:
 - Bustopologien
 - Zugriffsverfahren,
 - OSI/ISO-Modell und IEC Standards mit Protokollstrukturen
 - Feldbusysteme: Profibus, Interbus-S, CAN, EIB, LON
 - Backbone-Busse und Busse für die Bürokommunikation
 - LAN, WAN, TCP/IP-Protokolle
 - Datenkommunikation über öffentliche Netze, Gateways
 - Funknetze (Wireless Lan, ZigBee)

 Leittechnik und Netzbetrieb für Energienetze:
 - Analyse von technischen Prozessabläufen zur Erkennung typischer Aufgabenstellungen der Leittechnik
 - Erstellung eines Anforderungskatalogs für eine leittechnische Aufgabe
 - Komponenten und Strukturen in der Leittechnik, Leitebenen und Kommunikationswege
 - Erfassung der Prozessvariablen und Codierung
 - Prozessankopplung, (IEC-) Übertragungsstandards, Datensicherung
 - Fernwirkechnik, Verkehrs- und Betriebsarten
 - SCADA-Leitstelle, Hardware und Software, Funktionen und Werkzeuge
 - Systemanalysen mit Verfügbarkeitsbetrachtungen
 - IT Sicherheit in Leitsystemen
 - Smart Grids und Smart Metering

2. Ziele

3. Lehr- und Lernformen
 Vorlesung mit integrierten Übungen, seminaristischer Unterricht.

4. Leistungspunkte und Arbeitsaufwand
 5,0 CP, 150 Stunden insgesamt davon 75 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

6. Voraussetzungen
 Die Module B01 (Mathematik), B06 (Physik), B03 (Grundlagen der Elektrotechnik) und B09 (Methoden der Elektrotechnik) sollen abgeschlossen sein.
7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester und wird im Wintersemester angeboten.

8. Verwendbarkeit des Moduls
 Das Modul kann auch als Wahlpflichtmodul für die Vertiefungsrichtung Automatisierung und Informationstechnik und die Studiengänge Energiewirtschaft und Wirtschaftsingenieurswesen verwendet werden.
BE25 (Hochspannungs- und Hochleistungsanlagen)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 5 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE25</td>
<td>Hochspannungs- und Hochleistungsanlagen</td>
<td>Pflicht</td>
<td>Hochspannungs- und Hochleistungsanlagen</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hochspannungs- und Hochleistungsanlagen - Labor</td>
<td>3 V, 1 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Frontzek Betz

1. Inhalte

2. Ziele

3. Lehr- und Lernformen
Vorlesungen und praktische Laborversuche.

4. Leistungspunkte und Arbeitsaufwand
5,0 CP, 150 Stunden insgesamt, davon 75 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Das Labor muss erfolgreich abgeschlossen sein und dient als Prüfungsvorleistung. Die Klausur wird zu Ende des Moduls angeboten, eine Wiederholungsprüfung findet im Folgesemester statt. Die Prüfungsdauer beträgt 90 Minuten.

6. Voraussetzungen
Empfohlen werden grundlegende Kenntnisse der Lastfluss- und Kurzschlussstromberechnung aus dem Modul BE21 [Energieversorgung]

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester.

8. Verwendbarkeit des Moduls
Das Modul kann auch als Wahlpflichtmodul für die Studiengänge Energiewirtschaft und Wirtschaftsingenieurwesen verwendet werden.
BE26 (Regenerative Energien)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE26</td>
<td>Regenerative Energien</td>
<td>Pflicht</td>
<td>Regenerative Energien</td>
<td>5 CP</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r): weitere Lehrende

Petry

1. **Inhalte**
 - Zusammenhänge zwischen Energiebedarf, Ressourcen und Umweltauswirkungen global und für Deutschland
 - Geothermie, Ressourcen und Nutzungstechniken
 - Solarenergie, Ressourcen und Nutzungstechniken
 - Windenergie, Ressourcen und Nutzungstechniken
 - Wasserkraft, Ressourcen und Nutzungstechniken
 - Ausblick in die Zukunft

2. **Ziele**

3. **Lehr- und Lernformen**
 Vorlesung mit integrierten Übungen zu ausgeführten Anlagen

4. **Leistungspunkte und Arbeitsaufwand**
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**
 Prüfungsleistung in Form einer Klausur (Dauer: 90 min) über den Lehrinhalt der Lehrveranstaltung "Regenerative Energien". Die Klausur zur wird zum Ende des Moduls angeboten, eine Wiederholungsprüfung findet im folgenden Semester statt. Die Prüfungsdauer beträgt 90 Minuten.

6. **Voraussetzungen**
 Die Module B03 (Grundlagen der Elektrotechnik) und B06 (Physik) sollen abgeschlossen sein, die Prüfungsvorleistung zum Modul B01 (Mathematik) soll vorliegen.

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**
 Das Modul erstreckt sich über ein Semester

8. **Verwendbarkeit des Moduls**
 Das Modul führt in die Energien für die Zukunft – die Regenerativen Energien - ein. Da diese Themen eine immer größer werdende Bedeutung erlangen, kann das Modul in allen Studiengängen eingesetzt werden, insbesondere natürlich in denen, die eine technische oder wirtschaftswissenschaftliche Ausrichtung haben.
BE27 (Ingenieurwissenschaft 1)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27</td>
<td>Ingenieurwissenschaft 1</td>
<td>Wahlpflicht</td>
<td>Lehrveranstaltungen aus Katalog</td>
<td>4 o. 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BE27V</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 VLU</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) | weitere Lehrende
Prüfungsausschuss | alle Lehrenden im Studiengang

1. Inhalte
 Katalog BE27V:
 Siehe Modulbeschreibungen der Teilmodule

2. Ziele
 Die Studierenden sollen ihren Neigungen entsprechend weiterführende Kenntnisse im ingenieurwissenschaftlichen Bereich erwerben. Beim Seminar wird insbesondere die Fähigkeit zum Selbststudium gefördert.

3. Lehr- und Lernformen
 Vorlesungen und Labor, entsprechend der Teilmodulbeschreibung und Seminar.

4. Leistungspunkte und Arbeitsaufwand
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Jedes Teilmodul wird mit einer eigenen Prüfungsleistung gemäß seiner Modulbeschreibung geprüft. Die Modulprüfung ist erfolgreich abgeschlossen, wenn alle Prüfungsleistungen im Umfang von 5 CP der Teilmodule bestanden sind.

6. Voraussetzungen
 Siehe Modulbeschreibungen der Teilmodule.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

8. Verwendbarkeit des Moduls
 Das Modul dient als Vorbereitung für die Praxisprojekte und die Bachelor-Arbeit. Die Teilmodule können auch von Studierenden der anderen Vertiefungsrichtungen des Studienganges oder anderer technischer Studienrichtungen gewählt werden.
BE28 (Ingenieurwissenschaft 2)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE28</td>
<td>Ingenieurwissenschaft 2</td>
<td>Wahlpflicht</td>
<td>Lehrveranstaltungen aus Katalog BE27V</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 VLU</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende

Prüfungsausschuss alle Lehrende im Studiengang

1. Inhalte
 Katalog BE27V:
 Siehe Modulbeschreibungen der Teilmodule

2. Ziele
 Die Studierenden sollen ihren Neigungen entsprechend weiterführende Kenntnisse im ingenieurwissenschaftlichen Bereich erwerben. Beim Seminar wird insbesondere die Fähigkeit zum Selbststudium gefördert.

3. Lehr- und Lernformen
 Vorlesungen und Labor, entsprechend der Teilmodulbeschreibung und Seminar.

4. Leistungspunkte und Arbeitsaufwand
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Jedes Teilmodul wird mit einer eigenen Prüfungsleistung gemäß seiner Modulbeschreibung geprüft. Die Modulprüfung ist erfolgreich abgeschlossen, wenn alle Prüfungsleistungen im Umfang von 5 CP der Teilmodule bestanden sind.

6. Voraussetzungen
 Siehe Modulbeschreibungen der Teilmodule.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

8. Verwendbarkeit des Moduls
 Das Modul dient als Vorbereitung für die Praxisprojekte und die Bachelor-Arbeit. Die Teilmodule können auch von Studierenden der anderen Vertiefungsrichtungen des Studienganges oder anderer technischer Studienrichtungen gewählt werden.
BE29 (Ingenieurwissenschaft 3)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE29</td>
<td>Ingenieurwissenschaft 3</td>
<td>Wahlpflicht</td>
<td>Lehrveranstaltungen aus Katalog</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td>BE27V</td>
<td></td>
<td>BE27V</td>
<td>4 VLU</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Prüfungsausschuss alle Lehrenden im Studiengang

1. Inhalte

 Katalog BE27V:
 Siehe Modulbeschreibungen der Teilmodule

2. Ziele

 Die Studierenden sollen ihren Neigungen entsprechend weiterführende Kenntnisse im ingenieurwissenschaftlichen Bereich erwerben. Beim Seminar wird insbesondere die Fähigkeit zum Selbststudium gefördert.

3. Lehr- und Lernformen

 Vorlesungen und Labor, entsprechend der Teilmodulbeschreibung und Seminar.

4. Leistungspunkte und Arbeitsaufwand

 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

 Jedes Teilmodul wird mit einer eigenen Prüfungsleistung gemäß seiner Modulbeschreibung geprüft. Die Modulprüfung ist erfolgreich abgeschlossen, wenn alle Prüfungsleistungen im Umfang von 5 CP der Teilmodule bestanden sind.

6. Voraussetzungen

 Siehe Modulbeschreibungen der Teilmodule.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

8. Verwendbarkeit des Moduls

 Das Modul dient als Vorbereitung für die Praxisprojekte und die Bachelor-Arbeit. Die Teilmodule können auch von Studierenden der anderen Vertiefungsrichtungen des Studienganges oder anderer technischer Studienrichtungen gewählt werden.
BE30 (Ingenieurwissenschaft 4)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE30</td>
<td>Ingenieurwissenschaft 4</td>
<td>Wahlpflicht</td>
<td>Lehrveranstaltungen aus Katalog BE27V</td>
<td>5 CP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche(r)</th>
<th>weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsausschuss</td>
<td>alle Lehrenden im Studiengang</td>
</tr>
</tbody>
</table>

1. Inhalte

Katalog BE27V:
Siehe Modulbeschreibungen der Teilmodule

2. Ziele

Die Studierenden sollen ihren Neigungen entsprechend weiterführende Kenntnisse im ingenieurwissenschaftlichen Bereich erwerben. Beim Seminar wird insbesondere die Fähigkeit zum Selbststudium gefördert.

3. Lehr- und Lernformen

Vorlesungen und Labor, entsprechend der Teilmodulbeschreibung und Seminar.

4. Leistungspunkte und Arbeitsaufwand

5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Jedes Teilmodul wird mit einer eigenen Prüfungsleistung gemäß seiner Modulbeschreibung geprüft. Die Modulprüfung ist erfolgreich abgeschlossen, wenn alle Prüfungsleistungen im Umfang von 5 CP der Teilmodule bestanden sind.

6. Voraussetzungen

Siehe Modulbeschreibungen der Teilmodule.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

8. Verwendbarkeit des Moduls

Das Modul dient als Vorbereitung für die Praxisprojekte und die Bachelor-Arbeit. Die Teilmodule können auch von Studierenden der anderen Vertiefungsrichtungen des Studienganges oder anderer technischer Studienrichtungen gewählt werden.
Modulhandbuch

Bachelor of Engineering
Elektrotechnik und Informationstechnik

Wahlpflichtkatalog BE27V
BE27V01 (Elektromagnetische Verträglichkeit (EMV))

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V01</td>
<td>Elektromagnetische Verträglichkeit (EMV)</td>
<td>Wahlpflicht Teilmodul aus Wahlpflichtkatalog BE27V</td>
<td>s. Teilmodulname</td>
<td>2,5 CP</td>
<td></td>
</tr>
</tbody>
</table>

1. Inhalte:
- Einführung, Elektromagnetische Verträglichkeit – Elektromagnetische Beeinflussung
- Gegentakt- und Gleichtaktstörungen
- Störpegel und Störabstand, Beschreibung im Zeit- und Frequenzbereich
- Störquellen
- Koppelmechanismen und Gegenmaßnahmen
- Passive Entstörkomponenten
- EMV-Emissionsmesstechnik
- EMV-Störfestigkeitsprüftechnik
- Simulation in der EMV
- Normen und Vorschriften
- Exemplarische EMV-Probleme aus verschiedenen Bereichen

2. Ziele
Die Studierenden sollen Kenntnisse im Bereich der elektromagnetischen Störemission und Störfestigkeit sowie der zugrundeliegenden Simulations- und Messtechnik sowie Normen erlangen.

3. Lehr- und Lernformen
Vorlesung.

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Eine Klausur wird zum Ende des Moduls angeboten, eine Wiederholungsprüfung findet im folgenden Semester statt. Die Prüfungsdauer beträgt 90 Minuten.

6. Voraussetzungen
Empfohlen werden ausreichende Kenntnisse aus den Modulen B03 (Grundlagen der Elektrotechnik), B01 (Mathematik) und B06 (Physik).

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester. Lehrveranstaltung „Elektromagnetische Verträglichkeit": 2 SWS Vorlesung.

8. Verwendbarkeit des Moduls
Das Modul eignet sich als Basis für Praxisprojekte und Bachelor-Arbeiten. Darüber hinaus ist es in anderen Vertiefungsrichtungen im gleichen Studiengang und in verwandten ingenieurwissenschaftlichen Studiengängen (z.B. Automatisierungs- und Informationstechnik, Energie, Elektronik und Umwelt, Kommunikationstechnologie, Wirtschaftsingenieurwesen, usw.) als einführendes Modul im Bereich der Elektromagnetischen Verträglichkeit verwendbar.
BE27V02 (Netztraining)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V02</td>
<td>Netztraining</td>
<td>Wahlpflicht</td>
<td>Netztraining, Netztraining - Labor</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wahlpflichtkatalog BE27V</td>
<td>1 V, 1 L</td>
<td></td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] Metz

1. Inhalte
 - Betrieb und Störungsmanagement in elektrischen Netzen
 - Netzaufbau und Netzformen
 - Sternpunktbehandlungen und Konsequenzen für den Netzbetrieb
 - Schutzarten und Schutzkonzepte
 - Aufgaben des Netzbetriebs
 - Wirtschaftlich effizienter Netzbetrieb
 - Maßnahmen bei Überlastsituationen
 - Entstörung bei einphasigen Netzfehlern (Erdschluss)
 - Entstörung mehrpoliger Fehler (Kurzschluss)

2. Ziele

3. Lehr- und Lernformen
 Die in den Vorlesungen theoretisch behandelten Inhalte werden in authentischen Trainingssequenzen am Netz-Trainingssimulator in einer kleinen Gruppe geübt und jeweils ein Laborbericht dafür angefertigt.

4. Leistungspunkte und Arbeitsaufwand
 2,5 CP, 75 Stunden insgesamt davon ca. 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsduer und Prüfungsvoraussetzung
 Form: Klausur 1,5 h, ersatzweise ein Fachgespräch
 Voraussetzung: a) Anwesenheit zu den Laborterminen
 b) Vollständigkeit der Laborberichte
 c) Präsentation einer Netzübung (Trainingssystem oder Powerpoint)

6. Voraussetzungen
 Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.
 Empfohlen werden ausreichende Kenntnisse der Module BE24 (Leittechnik und Netzbetrieb) und BE25 (Hochspannungs- und Hochleistungsanlagen).

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.

8. Verwendbarkeit des Moduls
 Das Modul ist verwendbar zur Vertiefung in den Studienrichtung Wirtschaftsingenieurwesen und Energiewirtschaft in den Schwerpunkten Elektrotechnik bzw. Strommarkt.
BE27V03 (Rechnerunterstützte Anlagenplanung)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 5 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V03</td>
<td>Rechnerunterstützte Anlagenplanung</td>
<td>Wahlpflicht (Teilmodul aus</td>
<td>Labor</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wahlpflichtkatalog BE27V)</td>
<td></td>
<td>2 L</td>
</tr>
<tr>
<td>Modulverantwortliche[r]</td>
<td>weitere Lehrende</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontzek</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Inhalte
Planung der Energieversorgung eines kleinen Unternehmens (Industrie, Kliniken, Gebäuden, etc.) u. a. mit Hilfe eines CAD-Programms

2. Ziele

3. Lehr- und Lernformen
Projekt durchgeführt im CAD-Labor

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 75 Stunden insgesamt davon ca. 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.
Empfohlen werden grundlegende Kenntnisse der Anlagendimensionierung aus dem Modul BE25 (Hochspannungs- und Hochleistungsanlagen).

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester.

8. Verwendbarkeit des Moduls
Das Modul bietet wichtige Grundlagen für spätere Berufstätigkeiten von Ingenieuren, hauptsächlich auf dem Gebiet der Planung von elektrischen Energieversorgungssystemen.
Das Modul ist verwendbar als WP-Fach in folgenden Studiengängen:
- Elektrotechnik und Informationstechnik (Vertiefungsrichtungen EEU und Aul)
- Energiewirtschaft
- Wirtschaftsingenieurwesen
BE27V04 (Elektrische Bahnen)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V04</td>
<td>Elektrische Bahnen</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BE27V)</td>
<td>Elektrische Bahnen</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r]: weitere Lehrende

Bauer Rüffer

1. Inhalte
- Umweltaspekte verschiedener Verkehrssysteme
- Mechanische Grundlagen, Mechanik elektrischer Schienentriebfahrzeuge
- Elektrische Ausrüstung von Schienentriebfahrzeugen
- Antriebssysteme: Direktmotorantriebe, Mischstromantriebe, Drehstromantriebe, elektrische Bremsschaltungen, Regelung von Drehstromantrieben
- Komponenten elektrischer Antriebssysteme
- Energieversorgung elektrischer Triebfahrzeuge
- Magnetschwebetechnik

2. Ziele

3. Lehr- und Lernformen
Vorlesung

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Die Prüfung wird zu Ende des Teilmoduls angeboten, eine Wiederholungsprüfung findet im nächsten Semester statt (Klausur 90 Minuten).

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein. Empfohlen werden Grundkenntnisse aus BE18 (Elektrische Maschinen 1), BE19 Leistungselektronik 1, BE25 (Hochspannungs- und Hochleistungsanlagen).

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Sommer- oder Wintersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul ist verwendbar als WP-Fach in folgenden Studiengängen:
- Elektrotechnik und Informationstechnik [Vertiefungsrichtungen EEU und AuI]
- Mechatronik, [Vertiefungsrichtung Antriebstechnik],
- Wirtschaftsingenieurwesen
BE27V05 (Ausgewählte Kapitel der Messtechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V05</td>
<td>Ausgewählte Kapitel der Messtechnik</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BE27V)</td>
<td>Ausgewählte Kapitel der Messtechnik Labor Ausgewählte Kapitel der Messtechnik</td>
<td>2,5 CP 1 V, 1 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Denker Frontzek

1. Inhalte

2. Ziele
 Ziel des Moduls ist die Vermittlung von Kenntnissen zu ausgewählten Messsystemen und -verfahren für die Anwendung in der modernen Energie- und Umwelttechnik.

3. Lehr- und Lernformen
 Vorlesung und praktische Laborversuche

4. Leistungspunkte und Arbeitsaufwand
 2,5 CP, 75 Stunden insgesamt davon ca. 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Klausur 90 Minuten, als Prüfungsvorleistung ist die erfolgreiche Teilnahme an den zugehörigen Laborveranstaltungen erforderlich.

6. Voraussetzungen

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester.

8. Verwendbarkeit des Moduls
 Das Modul ist verwendbar als WP-Fach in folgenden Studiengängen:
 - Elektrotechnik und Informationstechnik
 - Mechatronik
 - Wirtschaftsingenieurwesen
BE27V06 (Schutztechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V06</td>
<td>Schutztechnik</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BE27V)</td>
<td>Schutztechnik</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Schutztechnik - Labor</td>
<td>1 V, 1 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] | weitere Lehrende
Frontzek

1. Inhalte

2. Ziele

3. Lehr- und Lernformen
Vorlesung und praktische Laborversuche

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 75 Stunden insgesamt davon ca. 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Klausur 90 Minuten, als Prüfungsvorleistung ist die erfolgreiche Teilnahme an den zugehörigen Laborveranstaltungen erforderlich.

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein. Empfohlen werden ausreichende Kenntnisse der Module BE21 (Energieversorgung) und BE25 (Hochspannungs- und Hochleistungsanlagen).

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester.

8. Verwendbarkeit des Moduls
Das Modul ist verwendbar als WP-Fach in folgenden Studiengängen:
- Elektrotechnik und Informationstechnik (Vertiefungsrichtungen EEU und AuI)
- Energiewirtschaft
- Wirtschaftsingenieurwesen
BE27V07 (Haustechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V07</td>
<td>Haustechnik</td>
<td>Wahlpflicht [Teilmodul aus Wahlpflichtkatalog BE27V]</td>
<td>s. Teilmodulname</td>
<td>2,5 CP</td>
</tr>
<tr>
<td>Modulverantwortliche[r]</td>
<td>weitere Lehrende</td>
<td></td>
<td></td>
<td>2 V</td>
</tr>
</tbody>
</table>

Denker

1. **Inhalte**
 - Erfassung von Umweltparametern für Regelungen in Gebäuden, Datenkommunikation in Gebäuden, Bussysteme, EiB.

2. **Ziele**
 - Ziel des Moduls ist die Vermittlung der Grundlagen zur Gebäudeautomatisierung.

3. **Lehr- und Lernformen**
 - Vorlesung

4. **Leistungspunkte und Arbeitsaufwand**
 - 2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**
 - Die Klausur wird zum Ende des Teilmoduls angeboten. Die Prüfungsdauer beträgt 90 Minuten.

6. **Voraussetzungen**

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**
 - Das Modul erstreckt sich über ein Semester.

8. **Verwendbarkeit des Moduls**
 - Das Modul ist verwendbar als WP-Fach in folgenden Studiengängen:
 - Elektrotechnik und Informationstechnik
 - Mechatronik,
 - Wirtschaftsingenieurwesen
BE27V08 (Rechnergestützte Schaltungsentwicklung)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V08</td>
<td>Rechnergestützte Schaltungsentwicklung</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BE27V)</td>
<td>Rechnergestützte Schaltungsentwicklung</td>
<td>2,5 CP 2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r]: weitere Lehrende

Denker: Schmidt-Walter

1. **Inhalte**
 - Entwurf, - Berechnung und Beschreibung einer elektronischen Schaltung.
 - Rechnergestützter Entwurf einer elektronischen Schaltung.
 - Rechnergestützter Entwurf einer Leiterplatte.
 - Praktischer Aufbau der Leiterplatte.
 - Praktische Inbetriebnahme der Leiterplatte.
 - Zusammenstellung der Fertigungsunterlagen.

2. **Ziele**
 Der Studierende soll lernen, die Entwicklung einer elektronischen Schaltung, beginnend mit dem Entwurf bis zur Inbetriebnahme eines Prototyps und die Erstellung der Fertigungsunterlagen durchzuführen.

3. **Lehr- und Lernformen**
 Eigenständige Durchführung der Schaltungsentwicklung mit unterstützender Vorlesung.

4. **Leistungspunkte und Arbeitsaufwand**
 2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**
 Bewertet wird die Schaltungskonstruktion und die dazugehörigen Fertigungsunterlagen und Fachgespräch.

6. **Voraussetzungen**

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**
 Die Lehrveranstaltung erstreckt sich über ein Semester.

8. **Verwendbarkeit des Moduls**
 Das Modul ist verwendbar als WP-Fach in folgenden Studiengängen:
 - Elektrotechnik und Informationstechnik
 - Mechatronik
 - Wirtschaftsingenieurwesen
BE27V09 (Elektromobilität)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V09</td>
<td>Elektromobilität</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BE27V)</td>
<td>Elektromobilität</td>
<td>2,5 CP</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>weitere Lehrende</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bauer</td>
<td>Große, Ronald</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Inhalte

2. Ziele

Das Modul soll einen Überblick über den Stand der Technik der Elektromobilität geben. Dazu gehört neben den Fahrzeugkonzepten auch ein Überblick über die wesentlichen Komponenten für E-Fahrzeuge. Des Weiteren soll ein Verständnis für die Komplexität der Errichtung einer öffentlichen Ladeinfrastruktur vermittelt werden und die Studierenden in die Lage versetzt werden, sich an der aktuellen Diskussion fachlich zu beteiligen.

3. Lehr- und Lernformen

4. Leistungspunkte und Arbeitsaufwand

2,5 CP, 75 Stunden insgesamt davon ca. 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Die Klausur wird zu Ende des Teilmoduls angeboten, eine Wiederholungsprüfung ist im folgenden Semester vorgesehen. Die Prüfungsdauer beträgt 60 Minuten.

6. Voraussetzungen

Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Das Modul erstreckt sich über ein Semester und wird im Sommer- oder Wintersemester angeboten.

8. Verwendbarkeit des Moduls

Das Modul ist für alle Ingenieur-Studiengänge verwendbar.
BE27V10 (Projekt mit Umweltbezug)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V10</td>
<td>Projekt mit Umweltbezug</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BE27V)</td>
<td>Projekt mit Umweltbezug</td>
<td>5 CP 2 S</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weiterlehrende
Bauer

1. Inhalte
- Kennt lernen der Phasen eines Projekts
- Pflichtenheft / Spezifikation
- Konzepterstellung
- Entwicklung
- Beschaffung von Material und Komponenten
- Zusammenbau und Konfiguration
- Inbetriebnahme, Systemtest, Dokumentation, Präsentation

2. Ziele
Die Studentinnen und Studenten sollen Erfahrungen und Kenntnisse gewinnen, die
- das methodische Vorgehen bei der Lösungsfindung und/oder Geräte-/Produktentwicklung
- die selbständige Lösung von "unstrukturierten" Aufgaben
- die Beschaffung von notwendigen Informationen und selbständige Einarbeitung in ein neues Themengebiet.
- das Berücksichtigen von Kostenaspekten
- die Terminplanung und -kontrolle
- das Arbeiten im Team
- die Präsentation von Arbeitsergebnissen erleichtern.

3. Lehr- und Lernformen
Seminar

4. Leistungspunkte und Arbeitsaufwand
5 CP, 150 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Projektbericht und Präsentation

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Wintersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul ist verwendbar als WP-Fach in folgenden Studiengängen:
- Elektrotechnik und Informationstechnik (Vertiefungsrichtung EEU)
- Mechatronik, (Vertiefungsrichtung Antriebstechnik),
- Wirtschaftsingenieurwesen (Vertiefungsrichtung Elektrotechnik).
BE27V11 (Elektrische Energiespeicher für mobile Anwendungen)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V11</td>
<td>Elektrische Energiespeicher</td>
<td>Wahlpflicht [Teilmodul aus Wahlpflichtkatalog BE27V]</td>
<td>Elektrische Energiespeicher</td>
<td>2,5 CP</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) | weitere Lehrende
Bauer / Betz | NN

1. Inhalte
- Historie der Speicherung von Energie
- Physikalische Grundlagen
- Mobile Energiespeicher auf Fahrzeugen: Batterie, Doppelschichtkondensator, Schwungmassenspeicher, Wasserstoffspeicher
- Prinzipielle Lösungen zur stationären Energiespeicherung
- Einführung in die Thematik „Smart Grids“ und die Auswirkung auf die Energiespeicher

2. Ziele
Ziel des Moduls “Energiespeicher” ist es, Möglichkeiten zur Speicherung elektrischer Energie für mobile Anwendungen vorzustellen.
Die Studierenden kennen die verschiedenen aktuellen Technologien und können deren Vor- und Nachteile benennen.
Die Studierenden können für vorgegebene Anwendungen geeignete Speicher auswählen, und dimensionieren. Sie kennen die Probleme des Batteriemanagements.
Die Studierenden können Energiespeicher modellieren und kennen Methoden zur Bestimmung des aktuellen Energieinhalts.
Die Studierenden wissen, wie Energiespeicher in vorhandene Netze und Smart Grids vorteilhaft integriert werden können.

3. Lehr- und Lernformen
Vorlesung mit möglichen Exkursionen zu Unternehmen im Rhein-Main-Gebiet.

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 75 Stunden insgesamt davon ca. 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Die Klausur wird zu Ende des Teilmoduls angeboten, eine Wiederholungsprüfung ist zu Beginn des folgenden Semesters vorgesehen. Die Prüfungsdauer beträgt 60 Minuten.

6. Voraussetzungen

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Sommer- oder Wintersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul ist für Ingenieur-Studiengänge im Bereich Elektrotechnik, Mechatronik, Automobilentwicklung und Maschinenbau verwendbar.
BE27V12 (Steuergeräte im Fahrzeug)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V12</td>
<td>Steuergeräte im Fahrzeug</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BE27V)</td>
<td>Steuergeräte im Fahrzeug 2,5 CP 2 V</td>
<td></td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Bauer NN

1. Inhalte
 - Überblick über die Leittechnik in einem Fahrzeug
 - Anforderungen an die Steuergeräte
 - Bussysteme im Fahrzeug
 - Entwicklung der Hard- und Software für spezielle Controller in Elektrofahrzeugen

2. Ziele
 Ziel des Moduls ist es, den Studierenden Aufbau und Funktionsweise einer Prozessleittechnik eines Fahrzeugs zu vermitteln.
 Die Studierenden kennen die speziellen Anforderungen und kennen die Probleme bei der Hard- und Softwareentwicklung speziell bei der Verwendung in Elektrofahrzeugen.

3. Lehr- und Lernformen
 Vorlesung mit möglichen Exkursionen zu Unternehmen im Rhein-Main-Gebiet.

4. Leistungspunkte und Arbeitsaufwand
 2,5 CP, 75 Stunden insgesamt davon ca. 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Die Klausur wird zu Ende des Teilmoduls angeboten, eine Wiederholungsprüfung ist im folgenden Semester vorgesehen. Die Prüfungsdauer beträgt 60 Minuten.

6. Voraussetzungen
 Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester und wird im Sommer- oder Wintersemester angeboten.

8. Verwendbarkeit des Moduls
 Das Modul ist für Ingenieur-Studiengänge im Bereich Elektrotechnik, Mechatronik, Automobilentwicklung und Maschinenbau verwendbar.
BE27V13 (Elektrischer Personenschutz und Vorschriften in der Fahrzeugtechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V13</td>
<td>Elektrischer Personenschutz und Vorschriften in der Fahrzeugtechnik</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BE27V)</td>
<td>Elektrischer Personenschutz Vorschriften und Normen in der Fahrzeugtechnik</td>
<td>2,5 CP</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weiterlehrende
Frontzek NN (Opel)

1. Inhalte

2. Ziele

3. Lehr- und Lernformen
Vorlesungen.

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 75 Stunden insgesamt, davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Die Klausur wird zu Ende des Moduls angeboten, eine Wiederholungsprüfung findet im Folgesemester statt. Die Prüfungsdauer beträgt 90 Minuten.

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollten abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester.

8. Verwendbarkeit des Moduls
Das Modul ist verwendbar als WP-Fach in folgenden Studiengängen:
- Elektrotechnik und Informationstechnik
- Energiewirtschaft
- Wirtschaftsingenieurwesen
BE27V14 (Lichttechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V14</td>
<td>Lichttechnik</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BE27V)</td>
<td>Lichttechnik</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lichttechnik - Labor</td>
<td>2 V, 1 L</td>
<td></td>
</tr>
</tbody>
</table>

Modulverantwortliche(r)

weitere Lehrende

NN

1. Inhalte

- Größen und Einheiten der Lichttechnik
- Messung der lichttechnischen Größen
- Physiologische und optische Grundlagen
- Licht und Farbe
- Lichterzeugung und Leuchtmittel
- LED-Technologie
- Berechnung von Beleuchtungsanlagen
- Beleuchtungskosten

2. Ziele

3. Lehr- und Lernformen

Vorlesung mit integriertem Labor

4. Leistungspunkte und Arbeitsaufwand

2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Klausur oder Fachgespräch

6. Voraussetzungen

Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Das Modul erstreckt sich über ein Semester.

8. Verwendbarkeit des Moduls

Das Modul ist verwendbar als WP-Fach in folgenden Studiengängen:
- Elektrotechnik und Informationstechnik (Vertiefungsrichtung EEU)
- Wirtschaftsingenieurwesen
BE27V15 (Hochspannungs- und Schaltanlagentechnologie in der Praxis)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V15</td>
<td>Hochspannungs- und Schaltanlagentechnologie in der Praxis</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BE27V)</td>
<td>Hochspannungs- und Schaltanlagentechnologie Hochspannungs- und Schaltanlagen - Labor</td>
<td>2,5 CP, 1 V, 1 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Betz Frontzek

1. Inhalte

2. Ziele

3. Lehr- und Lernformen
Vorlesungen und praktische Laborversuche.

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 75 Stunden insgesamt, davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein. Weiterhin soll das Modul B11 (Messtechnik) abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester.

8. Verwendbarkeit des Moduls
Das Modul kann auch als Wahlpflichtmodul für die Studiengänge Energiewirtschaft und Wirtschaftsingenieurbwesen verwendet werden.
BE27V16 (Elektrizitätswirtschaft)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 5/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V16</td>
<td>Elektrizitätswirtschaft</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BE27V)</td>
<td>Elektrizitätswirtschaft</td>
<td>2,5 CP</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] | weitere Lehrende
Petry | Fenn, Werum

1. Inhalte
- Volkswirtschaftliche Grundlagen
- Allgemeine Energie- und Stromwirtschaft
- Betriebswirtschaftliche Grundlagen / Wirtschaftlichkeitsrechnungen
- Wirtschaftliche Energieerzeugung
- Liberalisierter Strommarkt / Stromhandel
- Energiewirtschaftsgesetz, Erneuerbare Energien Gesetz (EEG)
- Smart Grids

2. Ziele

3. Lehr- und Lernformen
Vorlesung mit integrierten Übungen

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Klausur, 60 Minuten.

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul kann als Wahlpflichtvorlesung für die Vertiefungsrichtung EEU und für die Studiengänge Energiewirtschaft und Wirtschaftsingenieurwesen verwendet werden.
BE27V17 (Wasserstofftechnik und Brennstoffzellen)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V17</td>
<td>Wasserstofftechnik und Brennstoffzellen</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BE27V)</td>
<td>Wasserstofftechnik und Brennstoffzellen</td>
<td>2,5 CP</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r]
weitere Lehrende
Schmidt-Walter

1. Inhalte

2. Ziele

3. Lehr- und Lernformen
Vorlesung mit Versuchsvorführungen, eigenständige Laborversuche sind nicht vorgesehen.

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 75 Stunden insgesamt davon ca. 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Die Klausur wird zu Ende des Teilmoduls angeboten, eine Wiederholungsprüfung ist im folgenden Semester vorgesehen. Die Prüfungsdauer beträgt 60 Minuten.

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul ist für alle Ingenieur-Studiengänge verwendbar.
BE27V18 (Schaltnetzteile)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V18</td>
<td>Schaltnetzteile</td>
<td>Wahlpflicht [Teilmodul</td>
<td>Schaltnetzteile</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aus Wahlpflichtkatalog</td>
<td></td>
<td>2V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE27V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Schmidt-Walter

1. Inhalte
 Gleichrichtung und Siebung, Abwärtswandler, Aufwärtswandler, invertierender Wandler, Sperrwandler, Durchflusswandler, Gegentaktwandler, Regelung von Schaltnetzteilen, Berechnung von Speicherdrosseln, PFC (Power Factor Correction), Funkentstörung von Schaltnetzteilen

2. Ziele
 Das Modul soll einen Überblick über moderne Gerätestromversorgungen geben. Die Studierenden sollen lernen, grundlegende Schaltnetzteile ihrer Anwendung entsprechend nach Typ auszuwählen, die Schaltung zu entwerfen und zu berechnen, und ein Layout nach den Anforderungen der Leistungselektronik zu gestalten. Ferner sollen die Studierenden die Funkstörungen verstehen und geeignete Maßnahmen zu ihrer Unterdrückung entwerfen können.

3. Lehr- und Lernformen
 Vorlesung mit Versuchsvorführungen, eigenständige Laborversuche sind nicht vorgesehen.

4. Leistungspunkte und Arbeitsaufwand
 2,5 CP, 75 Stunden insgesamt davon ca. 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Die Klausur wird zu Ende des Teilmoduls angeboten, eine Wiederholungsprüfung ist im folgenden Semester vorgesehen. Die Prüfungsdauer beträgt 60 Minuten.

6. Voraussetzungen

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.

8. Verwendbarkeit des Moduls
 Das Modul ist für alle Ingenieur-Studiengänge verwendbar.
BE27V19 (Regelungstechnik für Antriebe)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE27V19</td>
<td>Regelungstechnik für Antriebe-</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BE27V)</td>
<td>Regelungstechnik für Antriebe-Labor</td>
<td>5 CP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche(r)</th>
<th>weitere Lehrende</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wagner</td>
<td>Bauer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Inhalte

Vorlesung:
- Beschreibung des dynamischen Verhaltens fremderregter Gleichstrommaschinen und der zugehörigen Stromrichter
- Erstellung der notwendigen Übertragungsfunktionen von E-Maschinen-Stromrichter, der Sensorik (Drehzahl, Position und Strom).
- Reglerdimensionierung und Systemoptimierung nach verschiedenen Berechnungsverfahren
- Regelung Drehfeldmaschinen, Strukturbilder und Regelverfahren (Raumzeiger)
- Anwendungsfelder für geregelte Antriebe; Vernetzung von Antriebssystemen

Labor:
- 2 Laborversuche drehzahlgeregelter Gleichstrom- und Asynchronmaschinen (Reglersynthese und Verifikation durch Messungen)

2. Ziele

Die Studierenden sind in der Lage, ein geregeltes Antriebssystem und seine Bestandteile zu definieren, die Analyse und Synthese eines geeigneten Reglers vorzunehmen.

3. Lehr- und Lernformen

Vorlesungen, Labor, Selbststudium

4. Leistungspunkte und Arbeitsaufwand

5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsleistung in Form einer Klausur (Dauer: 90 Minuten) über den gesamten Lehrinhalt des Moduls am Ende des Semesters, Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester. Das Labor muss mit Erfolg abgeschlossen werden.

6. Voraussetzungen

Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Das Modul erstreckt sich über ein Semester, das Modul wird in der Regel im Sommersemester angeboten.

8. Verwendbarkeit des Moduls

Modulhandbuch

Bachelor of Engineering
Elektrotechnik und Informationstechnik

Module des Vertiefungsstudiums der Kommunikationstechnologie
BK16 (Grundlagen der Nachrichtentechnik)

<table>
<thead>
<tr>
<th>Bezeichnung (Grundlagen der Nachrichtentechnik)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezeichnung</td>
</tr>
<tr>
<td>BK16</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) | weitere Lehrende
Loch | Kuhn, Schmiedel

1. Inhalte
 - Leitungen und Leitungstheorie
 - Simulation von Wellenausbreitung auf Leitungen
 - Anpassungen mit Hilfe von Leitungen
 - Smith-Chart
 - Grundlagenprinzipien der optischen Nachrichtentechnik
 - Wesentliche Komponenten der optischen Nachrichtentechnik: verschiedene Lichtwellenleiter und deren Signalverzerrungsmechanismen, optische Sender und Empfänger sowie deren Charakteristika

2. Ziele

3. Lehr- und Lernformen
 Vorlesung mit integrierter Übung und Simulation.

4. Leistungspunkte und Arbeitsaufwand
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Prüfungsleistung in Form einer Klausur (Dauer: 60 min) über den gesamten Lehrinhalt des Moduls am Ende des Moduls.
 Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester.

6. Voraussetzungen
 Die Module B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein, die Prüfungsvorleistung zu dem Modulen B01 (Mathematik) muss vorliegen.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester, das Modul wird im Wintersemester angeboten.

8. Verwendbarkeit des Moduls
 Das Modul vermittelt Basiswissen im Bereich der Nachrichten-Übertragungstechnik, das für alle ingenieurwissenschaftlichen Studiengänge erforderlich ist.
BK17 (Übertragungstechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK17</td>
<td>Übertragungstechnik</td>
<td>Pflicht</td>
<td>Übertragungstechnik, Labor Elektronik und Nachrichtenübertragung</td>
<td>5 CP, 2 V, 2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r): weitere Lehrende

Schmiedel Gaspard

1. **Inhalte**
 - Grundlagen der Übertragungs-, Hochfrequenz- und Mikrowellentechnik
 - Verstärker
 - Intercept Punkt
 - Rauschen
 - MDS
 - Mischer
 - Ozillatoren, Syntheziser
 - Empfängerkonzepte
 - Senderkonzepte
 - Elektronische Schaltungen der Übertragungstechnik

2. **Ziele**

3. **Lehr- und Lernformen**
 Vorlesungen, Laborübungen und Simulationen.

4. **Leistungspunkte und Arbeitsaufwand**
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**
 Prüfungsvorleistung in Form eines Fachgespräches zum „Labor Elektronik und Nachrichtenübertragung“, Prüfungsleistung in Form einer Klausur (Dauer: 60 min) über den gesamten Lehrinhalt des Moduls am Ende des Moduls. Wiederholungsmöglichkeiten für die Prüfungsvorleistung und Prüfungsleistung bestehen im Folgesemester. Die Teilnahme am „Labor Elektronik und Nachrichtenübertragung“ ist Voraussetzung für die Prüfungsleistung „Übertragungstechnik“.

6. **Voraussetzungen**
 Die Module B03 (Grundlagen der Elektrotechnik) und B06 (Physik) sollten abgeschlossen sein, die Prüfungsvorleistung zum Modul B01 (Mathematik) soll vorliegen.

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**
 Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.
 Lehrveranstaltung „Übertragungstechnik“: 2 SWS Vorlesung,
 Lehrveranstaltung „Labor Elektronik und Nachrichtenübertragung“: 2 SWS Labor

8. **Verwendbarkeit des Moduls**
BK18 (Signalverarbeitung 1)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK18</td>
<td>Signalverarbeitung 1</td>
<td>Pflicht</td>
<td>Signalverarbeitung 1 - Vorlesung</td>
<td>4 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Signalverarbeitung 1 - Labor</td>
<td>5 CP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche(r)</th>
<th>weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Götzte, Krauß, Wirth</td>
</tr>
</tbody>
</table>

1. **Inhalte**
 - Abtastung, Quantisierung, Aliasing,
 - Signalprozessoren
 - Zeitdiskrete Signale und Systeme im Zeit- und Frequenzbereich

2. **Ziele**
 Die Studierenden sollen Grundkenntnisse in der Signalverarbeitung erwerben. Diese Kenntnisse sollen an praktischen Beispielen vertieft werden.

3. **Lehr- und Lernformen**
 Vorlesungen und Labor-Übungen am Rechner.

4. **Leistungspunkte und Arbeitsaufwand**
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**
 1. Erfolgreiche Laborteilnahme und testierte Laborberichte (ohne Benotung).
 2. Prüfungsleistung in Form einer Klausur (Dauer: 60 min) über den gesamten Lehrinhalt des Moduls nach Abschluss der Lehrveranstaltungen.
 Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester.

6. **Voraussetzungen**
 Grundkenntnisse aus dem Bereich der Signal- und Systemtheorie, wie sie im Modul „Grundlagen der Systemtheorie und Regelungstechnik“ gelehrt werden, sind empfehlenswert.

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**
 Das Modul erstreckt sich jeweils über die erste Hälfte der Vorlesungszeit im Sommersemester.
 Die nachfolgend angegebenen SWS beziehen sich jedoch auf das gesamte Semester.
 Lehrveranstaltung „Signalverarbeitung 1 - Vorlesung“: 3 SWS Vorlesung.
 Lehrveranstaltung „Signalverarbeitung 1- Labor“: 1 SWS Labor.

8. **Verwendbarkeit des Moduls**
BK19 (Signalverarbeitung 2)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK19</td>
<td>Signalverarbeitung 2</td>
<td>Pflicht</td>
<td>Signalverarbeitung 2 - Vorlesung</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Signalverarbeitung 2 - Labor</td>
<td>3 V, 1 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Schultheiß Götze, Krauß, Wirth

1. **Inhalte**
 - Entwurf digitaler Filter
 - Korrelationsfunktionen und ihre Anwendungen
 - Statistische Signalbeschreibungen

2. **Ziele**
 Die Studierenden sollen weiterführende Kenntnisse in der Signalverarbeitung erwerben. Diese Kenntnisse sollen an praktischen Beispielen vertieft werden.

3. **Lehr- und Lernformen**
 Vorlesungen und Labor-übungen am Rechner

4. **Leistungspunkte und Arbeitsaufwand**
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**
 1. Erfolgreiche Laborteilnahme und testierte Laborberichte (ohne Benotung).
 2. Prüfungsvorleistung in Form einer praktischen Prüfung am Rechner zum Labor (benotet).
 3. Prüfungsleistung in Form einer Klausur (Dauer: 60 min) über den gesamten Lehrinhalt des Moduls nach Abschluss der Lehrveranstaltungen.
 Wiederholungsmöglichkeiten für die Prüfungsvorleistung und Prüfungsleistung bestehen im Folgesemester.
 Die Prüfungsvorleistung kann nach der Prüfungsleistung erbracht werden.

6. **Voraussetzungen**

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**
 Das Modul erstreckt sich jeweils über die zweite Hälfte der Vorlesungszeit im Sommersemester.
 Die nachfolgend angegebenen SWS beziehen sich jedoch auf das gesamte Semester.
 Lehrveranstaltung „Signalverarbeitung 2 - Vorlesung“: 3 SWS Vorlesung.
 Lehrveranstaltung „Signalverarbeitung 2 - Labor“: 1 SWS Labor.

8. **Verwendbarkeit des Moduls**
 Das Modul dient innerhalb der Vertiefung Kommunikationstechnologie des Studiengangs Elektrotechnik und Informationstechnik als vertiefende Basis beispielsweise für die Module „Softwaregestützter Systementwurf“, „Multimedia-Technik“, „Codierte Datenübertragung“, und „Kommunikationssysteme“. Ferner ist es in anderen Vertiefungsrichtungen im gleichen Studiengang und in verwandten ingenieurwissenschaftlichen Studiengängen auch als weiterführendes Modul im Bereich der Signalverarbeitung verwendbar.
BK20 (Entwurf digitaler Systeme)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK20</td>
<td>Entwurf digitaler Systeme</td>
<td>Pflicht</td>
<td>Entwurf digitaler Systeme - Labor</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 V, 2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Krauß Schultheiß, Wirth

1. Inhalte
- Einführung in die Hardware-Beschreibungssprache VHDL und zugehörige Entwurfskonzepte
- Beschreibung und Entwurf von Schaltnetzen (z.B. Rechenschaltungen, Kodierer, Auswahlschaltungen) und Schaltwerken (z.B. Flip-Flops, Zähler, Schieberegister, Speicher, Automaten) mit VHDL
- Grundlagen der Automatentheorie (Moore-, Mealy-Automaten)
- Optimierung sequentieller Schaltungen mittels Zustandsreduktion und Schaltnetzoptimierung
- Realisierung von digitalen Schaltkreisen und Systemen mittels programmierbarer Logikbausteine (z.B. CPLDs, FPGAs)
- Rechnergestützte Entwurfs- und Syntheseworkzeuge, Simulations- und Testverfahren, nicht-ideale Hardware-Eigenschaften

2. Ziele
Die Studierenden sollen dazu befähigt werden, digitale Systeme zu entwerfen, zu simulieren und zu realisieren auf der Basis einer Hardware-Beschreibung mit VHDL. Dies umfasst den systematischen Entwurf von technisch relevanten digitalen Systemen, ihre Realisierung mit Hilfe programmierbarer Logikbausteine (FPGAs) und den praktischen Aufbau digitaler Schaltungen.

3. Lehr- und Lernformen
Vorlesungen und Laborübungen

4. Leistungspunkte und Arbeitsaufwand
5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

6. Voraussetzungen
Die Module B03 (Grundlagen der Elektrotechnik) und B06 (Physik) sollen abgeschlossen sein, die Prüfungsvorleistung zum Modul B01 (Mathematik) muss vorliegen. Das Modul B02 (Digitaltechnik) sollte abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.
Lehrveranstaltung „Entwurf digitaler Systeme“: 2 SWS Vorlesung.
Lehrveranstaltung „Entwurf digitaler Systeme - Labor“: 2 SWS Labor.

8. Verwendbarkeit des Moduls
Das Modul eignet sich als Basis für Praxisprojekte und Bachelor-Arbeiten. Ferner ist es in anderen Vertiefungsrichtungen im gleichen Studiengang und in verwandten ingenieurwissenschaftlichen Studiengängen auch als einführendes Modul im Bereich des Entwurfs digitaler Systeme verwendbar.
BK21 (Softwaregestützter Systementwurf)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK21</td>
<td>Softwaregestützter Systementwurf</td>
<td>Pflicht</td>
<td>Softwaregestützter Systementwurf</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Softwaregestützter Systementwurf - Labor</td>
<td>2 V, 2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r)

Wirth Götze

1. Inhalte
 - Softwaretechnische Realisierung von Algorithmen und Systemen der Nachrichtentechnik
 - Anwendung von Software-Bibliotheken (Netzwerk, Datenbank, Gerätesteuerung)

2. Ziele

3. Lehr- und Lernformen
 Vorlesung, Labor.

4. Leistungspunkte und Arbeitsaufwand
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Die Modulprüfung besteht aus einer unbenoteten Prüfungsvorleistung und der Prüfungsleistung.
 Die Prüfungsvorleistung wird durch erfolgreiche Teilnahme am Labor erbracht und ist Voraussetzung für die Teilnahme an der Prüfungsleistung.
 Die Prüfungsleistung wird am Ende des Moduls in Form einer praktischen Prüfung am Rechner (Dauer: 120min) über den gesamten Lehrinhalt des Moduls abgelegt.

6. Voraussetzungen
 Grundkenntnisse insbesondere aus dem Modul B08 "Grundlagen der Informationstechnik" aber auch aus B10 "Mikroprozessortechnik" sowie B13 "Grundlagen der Systemtheorie und Regelungstechnik" sind empfehlenswert.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.
 Lehrveranstaltung „Softwaregestützter Systementwurf“: 2 SWS Vorlesung,
 Lehrveranstaltung „Softwaregestützter Systementwurf - Labor“: 2 SWS Labor.

8. Verwendbarkeit des Moduls
 Das Modul eignet sich als Ergänzung zu verschiedenen Modulen der Vertiefung
 Kommunikationstechnologie (z.B. Signalverarbeitung, Kommunikationsnetze) sowie als Basis für Praxisprojekte und Bachelor-Arbeiten. Ferner ist es in anderen Vertiefungsrichtungen im gleichen Studiengang und in verwandten ingenieurwissenschaftlichen Studiengängen auch als einführendes Modul im Bereich des softwaregestützten Systementwurfs verwendbar.
BK22 (Multimediatechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK22</td>
<td>Multimediatechnik</td>
<td>Pflicht</td>
<td>Multimediatechnik</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Multimediatechnik-Labor</td>
<td>3 V, 1 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r)
Wirth Götze, Schultheiß

1. Inhalte
- Multimedia-Rechner (Hard- und Software-Komponenten sowie Schnittstellen multimediafähiger Rechner)
- Speichertechnik (z.B. optische Speicher)
- Psychoakustik
- Videotechnik (Aufnahme, Wiedergabe, Speicherung, Verarbeitung)
- Standards (Funktionalitäten, Kompression, Formate)
- Dienste und Anwendungen (Text, Bild, Audio, Video)

2. Ziele

3. Lehr- und Lernformen
Vorlesung, Labor.

4. Leistungspunkte und Arbeitsaufwand
5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Prüfungsleistung in Form einer Klausur (Dauer: 90 min) über den Lehrinhalt des Moduls am Ende des Semesters.
Eine Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester.

6. Voraussetzungen
Grundkenntnisse aus den Modulen B13 "Grundlagen Systemtheorie und Regelungstechnik" und B10 "Mikroprozessortechnik" sind empfehlenswert.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Wintersemester angeboten.
Lehrveranstaltung „Multimediatechnik“: 3 SWS Vorlesung, 1 SWS Labor.

8. Verwendbarkeit des Moduls
Das Modul festigt und vertieft Kenntnisse aus verschiedenen Modulen (z.B. Grundlagen der System- und Regelungstechnik, Mikroprozessortechnik) durch Verknüpfung des erworbenen Wissens mit konkreten technischen Anwendungen. Ferner kann es als Vorbereitung für das BPP und die Bachelor-Arbeit dienen.
BK23 (Kommunikationsnetze)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK23</td>
<td>Kommunikationsnetze</td>
<td>Pflicht</td>
<td>Kommunikationsnetze</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kommunikationsnetze - Labor</td>
<td>3 V, 1 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r): weitere Lehrende
Gerdes Chen

1. **Inhalte**

 Inhalte der Lehrveranstaltung
 - LAN-, WAN- und MAN – Netzwerktopologien
 - Grundlagen der Datenübertragung und Typen der Kommunikation
 - Grundlagen des OSI-Modells
 - Fest geschaltete Datenübertragung, Vermittlungstechnik (ISDN)
 - Prinzip der paketorientierten Datenübertragung
 - Physikalische, Link-, Netzwerk- und Transportschichtenprotokolle von Daten netzen inkl. Routing
 - Internetworking und Komponenten für Daten netze (Repeater, Switches, Router)
 - Entwurf und Optimierung von LAN-Netzen
 - Spezifische Applikationsprotokolle und Anwendungen, z.B. RTP und VoIP

 Inhalte des Labors
 - Konfigurationen im LAN mit Switches und Routern
 - Methoden, Tools und Geräte zur Überwachung und Analyse von LAN
 - Durchsatzmessungen im LAN

2. **Ziele**

 Zusätzlich erwerben sie Grundlagenwissen in der Leistungsbewertung von Rechnernetzen.

 Weiterhin werden in den Laboren grundsätzliche Kenntnisse in der Konfiguration von Ethernet- und IP-Netzen vermittelt.

3. **Lehr- und Lernformen**

 Vorlesungen, integrierte Übungen und Versuche im Labor.

4. **Leistungspunkte und Arbeitsaufwand**

 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsduer und Prüfungsvoraussetzung**

 Prüfungsleistung in Form einer Klausur (Dauer: 90 min) über den Lehrinhalt des Moduls am Ende des Moduls.

 Eine Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester. Die Teilnahme am Labor „Kommunikationsnetze“ ist Voraussetzung für die Teilnahme an der Prüfungsleistung „Kommunikationsnetze“.

6. **Voraussetzungen**

 Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**

 Das Modul erstreckt sich über ein Semester und wird im Wintersemester angeboten.

 Lehrveranstaltung „Kommunikationsnetze“: 5 SWS Vorlesung + Labor.

8. **Verwendbarkeit des Moduls**

 Das Modul dient innerhalb des Studiengangs zur Unterstützung des Moduls „Multimediatechnik“. Ferner ist es in anderen Vertiefungsrichtungen im gleichen Studiengang auch als einführendes Modul im Bereich der Informations- und Kommunikationstechnik verwendbar.
BK24 (Modulation)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK24</td>
<td>Modulation</td>
<td>Pflicht</td>
<td>Modulation</td>
<td>5 CP 4 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Kuhn -

1. **Inhalte**
 - Zufallsprozesse
 - Basisbandmodulation
 - Analog Modulationsverfahren
 - Äquivalente Basisbanddarstellung
 - Digitale Modulationsverfahren
 - Matched-Filter-Empfänger
 - Nyquist-Kriterien
 - Partial-Response-Signale

2. **Ziele**

3. **Lehr- und Lernformen**
 Vorlesung

4. **Leistungspunkte und Arbeitsaufwand**
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**
 Prüfungsleistung in Form einer Klausur (Dauer: 60 min) über den gesamten Lehrinhalt des Moduls am Ende des Moduls.
 Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester.

6. **Voraussetzungen**

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**
 Das Modul erstreckt sich über ein Semester und wird im Wintersemester angeboten.

8. **Verwendbarkeit des Moduls**
 Das Modul dient innerhalb des Studiengangs zur Unterstützung der Module „Codierte Datenübertragung“ und „Kommunikationsnetze“ sowie als Basis für das Modul „Kommunikationssysteme“. Ferner ist es in anderen Vertiefungsrichtungen im gleichen Studiengang auch als einführendes Modul im Bereich der Modulation verwendbar.
BK25 (Optische Netze)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 5 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK25</td>
<td>Optische Netze</td>
<td>Pflicht</td>
<td>Optische Netze</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Labor Optische Netze</td>
<td>3 V, 1 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) | weitere Lehrende
Loch | Gerdes, Chen

1. Inhalte
Inhalte Lehrveranstaltung Optische Netze:
- Vertiefende theoretische und praktische Betrachtungen zu Lichtwellenleitern, u.a. Theorie elektromagnetischer Wellen, Verzerrungsmechanismen spezieller Lichtwellenleiter, Modenbetrachtung, nichtlineare Effekte
- Komponenten optischer Netze: optimierte Sender und Empfangselemente, optischer Verstärker
- Grundlegende Systembetrachtungen: Systemdesign, Dispersionsmanagement,
- Komplexe Systeme: Photonische Netze
- Optische Übertragungssysteme mit WDM, SDH und Ethernet
- Planung von optischen Netzen

Inhalte Lehrveranstaltung Labor Optische Netze:
- Einführung in die Messtechnik
- Simulation optischer Netze

2. Ziele
Die Studierenden sollen weiterführende Kenntnisse in komplexen Systemen der optischen Übertragungstechnik erwerben.

3. Lehr- und Lernformen
Vorlesung, Laborübungen und Simulation.

4. Leistungspunkte und Arbeitsaufwand
5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen;

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Prüfungsvorleistung in Form von Präsentationen zu den einzelnen Versuchsthemen.
Prüfungsleistung „Optische Netze“ in Form einer Klausur (Dauer: 90 min) über den gesamten Lehrinhalt des Moduls am Ende des Moduls.
Wiederholungsmöglichkeit der Prüfungsleistung besteht im Folgesemester.
Die Teilnahme am „Labor Optische Netze“ ist Voraussetzung für die Teilnahme an der Prüfungsleistung „Optische Netze“

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein. Weiterhin sind Kenntnisse aus den Modulen „Grundlagen der Nachrichtentechnik“, „Übertragungstechnik“ sowie „Methoden der Elektrotechnik“ erforderlich.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester; die Lehrveranstaltungen des Moduls werden im Wintersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul vermittelt Spezialwissen im Bereich optischer Kommunikationssysteme und dient als Vorbereitung für die Praxisphase und die Bachelor-Arbeit.
BK26 (Codierte Datenübertragung)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK26</td>
<td>Codierte Datenübertragung</td>
<td>Pflicht</td>
<td>Codierte Datenübertragung</td>
<td>5 CP 4 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Kuhn Götze, Krauß

1. Inhalte
- Kanäle und Kanalmodelle
- Informationstheorie und Kanalkapazität
- Quellencodierung
- Kanalcodierung
- Fehlersicherung
- Kryptographie

2. Ziele
Die Studierenden sollen Kenntnisse verschiedener Codierungsverfahren und deren Anwendungen erwerben.

3. Lehr- und Lernformen
Vorlesung.

4. Leistungspunkte und Arbeitsaufwand
5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Prüfungsleistung in Form einer Klausur (Dauer: 60 min) über den gesamten Lehrinhalt des Moduls am Ende des Moduls.
Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester.

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Wintersemester angeboten.

8. Verwendbarkeit des Moduls
BK27 (Hochfrequenz- und Mikrowellentechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 5 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK27</td>
<td>Hochfrequenz- und Mikrowellentechnik</td>
<td>Pflicht</td>
<td>Hochfrequenz/Mikrowellentechnik und Antennen, Labor Hochfrequenztechnik</td>
<td>5 CP, 3 V, 1 L</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>weitere Lehrende</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmiedel</td>
<td>Gaspard</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Inhalte
- Hochfrequenz- und Mikrowellentechnik
 - Passive Leitungsbaulemente, Koppler, Leistungsteiler, Filter
 - Hohlleiter und Hohlleiterkomponenten
 - Aktive Baulelemente
- Antennen und Wellenausbreitung
- Simulations-Tools
- Labor Hochfrequenztechnik

2. Ziele
Die Studierenden sollen weiterführende Kenntnisse in der Hochfrequenz-/Mikrowellentechnik für verschiedene Medien erwerben.

3. Lehr- und Lernformen
Vorlesungen mit Simulationen und Labor

4. Leistungspunkte und Arbeitsaufwand
5 CP, 150 Stunden insgesamt davon 75 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein. Weiterhin sind Kenntnisse aus den Modulen „Übertragungstechnik“ und „Grundlagen der Nachrichtentechnik“ erforderlich.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Wintersemester angeboten. Lehrveranstaltung „Hochfrequenz/Mikrowellentechnik und Antennen“: 4 SWS Vorlesung und 1 SWS Labor

8. Verwendbarkeit des Moduls
Das Modul dient innerhalb des Studiengangs als Basis für die Module „Ingenieurwissenschaften“ und „Kommunikationssysteme“.
BK28 (Kommunikationssysteme)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK28</td>
<td>Kommunikationsysteme</td>
<td>Pflicht</td>
<td>Kommunikationssysteme-Kommunikationssysteme-Labor</td>
<td>5 CP, 2 V, 2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche[re]
weitere Lehrende
Kuhn

1. **Inhalte**
 - Moderne Basisband- und Modulationssysteme
 - Empfangsstrategien und optimale Empfänger
 - Signalraumanalyse
 - Link-Layer Simulationen
 - Aufbau und Dimensionierung von modernen Kommunikationssystemen
 - Beispiele moderner Kommunikationssysteme (z.B. UMTS, WLAN, Bluetooth)

2. **Ziele**

3. **Lehr- und Lernformen**
 Vorlesung und Laborübung

4. **Leistungspunkte und Arbeitsaufwand**
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen

5. **Prüfungsvorschrift, Prüfungsdauer und Prüfungsvoraussetzung**
 Prüfungsvorleistung in Form eines Fachgesprächs zum Labor „Kommunikationssysteme”, Prüfungsleistung in Form einer Klausur (Dauer: 60 min) über den gesamten Lehrinhalt des Moduls am Ende des Moduls. Wiederholungsmöglichkeiten für die Prüfungsvorleistung und Prüfungsleistung besteht im Folgesemester.
 Die Teilnahme am „Kommunikationssysteme-Labor” ist Voraussetzung für die Prüfungsleistung „Kommunikationssysteme”. Die Prüfungsvorleistung „Kommunikationssysteme-Labor” kann jedoch nach der Prüfungsleistung „Kommunikationssysteme” erbracht werden.

6. **Voraussetzungen**

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**
 Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.

8. **Verwendbarkeit des Moduls**
 Das Modul dient als Vorbereitung für das Praxisprojekt und die Bachelor-Arbeit.
BK29 (Ingenieurwissenschaft 1)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29</td>
<td>Ingenieurwissenschaft 1</td>
<td>Wahlpflicht</td>
<td>Wahlpflicht von zwei Lehrveranstaltungen à 2,5 CP aus Katalog BK29VL</td>
<td>5 CP 4 VLU</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Prüfungsausschuss alle Lehrenden im Studiengang

1. Inhalte
 Katalog BK29VL:
 Siehe Modulbeschreibungen der Teilmodule

2. Ziele
 Die Studierenden sollen ihren Neigungen entsprechend weiterführende Kenntnisse im ingenieurwissenschaftlichen Bereich erwerben. Beim Seminar wird insbesondere die Fähigkeit zum Selbststudium gefördert.

3. Lehr- und Lernformen
 Vorlesungen und Labor, entsprechend der Teilmodulbeschreibung und Seminar.

4. Leistungspunkte und Arbeitsaufwand
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Jedes Teilmodul wird mit einer eigenen Prüfungsleistung gemäß seiner Modulbeschreibung geprüft. Die Modulprüfung ist erfolgreich abgeschlossen, wenn alle Prüfungsleistungen im Umfang von 5 CP der Teilmodule bestanden sind.

6. Voraussetzungen
 Siehe Modulbeschreibungen der Teilmodule.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

8. Verwendbarkeit des Moduls
 Das Modul dient als Vorbereitung für die Praxisprojekte und die Bachelor-Arbeit. Die Teilmodule können auch von Studierenden der anderen Vertiefungsrichtungen des Studienganges oder anderer technischer Studienrichtungen gewählt werden.
BK30 (Ingenieurwissenschaft 2)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK30</td>
<td>Ingenieurwissenschaft 2</td>
<td>Wahlpflicht</td>
<td>Wahlpflicht von zwei Lehrveranstaltungen à 2,5 CP aus Katalog BK29VL</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 VLU</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r): weitere Lehrende

Prüfungsausschuss: alle Lehrenden im Studiengang

1. Inhalte

 Katalog BK29VL:
 - Siehe Modulbeschreibungen der Teilmodule

2. Ziele

 Die Studierenden sollen ihren Neigungen entsprechend weiterführende Kenntnisse im ingenieurwissenschaftlichen Bereich erwerben. Beim Seminar wird insbesondere die Fähigkeit zum Selbststudium gefördert.

3. Lehr- und Lernformen

 Vorlesungen und Labor, entsprechend der Teilmodulbeschreibung und Seminar.

4. Leistungspunkte und Arbeitsaufwand

 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

 Jedes Teilmodul wird mit einer eigenen Prüfungsleistung gemäß seiner Modulbeschreibung geprüft. Die Modulprüfung ist erfolgreich abgeschlossen, wenn alle Prüfungsleistungen im Umfang von 5 CP der Teilmodule bestanden sind.

6. Voraussetzungen

 Siehe Modulbeschreibungen der Teilmodule.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

8. Verwendbarkeit des Moduls

 Das Modul dient als Vorbereitung für die Praxisprojekte und die Bachelor-Arbeit. Die Teilmodule können auch von Studierenden der anderen Vertiefungsrichtungen des Studienganges oder anderer technischer Studienrichtungen gewählt werden.
Modulhandbuch

Bachelor of Engineering
Elektrotechnik und Informationstechnik

Wahlpflichtkatalog BK29VL
BK29VL01 (Elektromagnetische Verträglichkeit (EMV))

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL01</td>
<td>Elektromagnetische Verträglichkeit [EMV]</td>
<td>Wahlpflicht [Teilmodul aus Wahlpflichtkatalog BK29VL]</td>
<td>s. Teilmodulname</td>
<td>2,5 CP 2 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Gaspard

1. Inhalte:
 - Einführung, Elektromagnetische Verträglichkeit – Elektromagnetische Beeinflussung
 - Gegentakt- und Gleichaktstörungen
 - Störpegel und Störabstand, Beschreibung im Zeit- und Frequenzbereich
 - Störquellen
 - Koppelmechanismen und Gegenmaßnahmen
 - Passive Entstörkomponenten
 - EMV-Emissionsmesstechnik
 - EMV-Störfestigkeitsprüftechnik
 - Simulation in der EMV
 - Normen und Vorschriften
 - Exemplarische EMV-Probleme aus verschiedenen Bereichen

2. Ziele
 Die Studierenden sollen Kenntnisse im Bereich der elektromagnetischen Störemission und Störfestigkeit sowie der zugrundeliegenden Simulations- und Messtechnik sowie Normen erlangen.

3. Lehr- und Lernformen
 Vorlesung.

4. Leistungspunkte und Arbeitsaufwand
 2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Eine Klausur wird zum Ende des Moduls angeboten, eine Wiederholungsprüfung findet im folgenden Semester statt. Die Prüfungsdauer beträgt 90 Minuten.

6. Voraussetzungen
 Empfohlen werden ausreichende Kenntnisse aus den Modulen B03 [Grundlagen der Elektrotechnik], B01 [Mathematik] und B06 [Physik].

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester.
 Lehrveranstaltung „Elektromagnetische Verträglichkeit”: 2 SWS Vorlesung.

8. Verwendbarkeit des Moduls
 Das Modul eignet sich als Basis für Praxisprojekte und Bachelor-Arbeiten. Darüber hinaus ist es in anderen Vertiefungsrichtungen im gleichen Studiengang und in verwandten ingenieurwissenschaftlichen Studiengängen (z.B. Automatisierungs- und Informationstechnik, Energie, Elektronik und Umwelt, Telekommunikation, Wirtschaftsingenieurwesen, usw.) als einführendes Modul im Bereich der Elektromagnetischen Verträglichkeit verwendbar.
BK29VL02 (Internet-Kommunikation)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL02</td>
<td>Internet-Kommunikation</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BK29VL)</td>
<td>s. Teilmodulname</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 V</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>weitere Lehrende</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gerdes</td>
<td>Chen</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Inhalte
- Struktur von Netzen im MAN und WAN
- Schicht 2 Protokolle für MAN und WAN-Netze
- Multiprotocol-Label-Switching (MPLS)
- IP-Routing-Methoden und Verfahren (Dijkstra, OSPF/IS-IS, BGP)
- Interne Funktionsprinzipien von Datenübertragungssystemen wie Routern und Switchen
- Leistungsbewertung von Paketnetzen

2. Ziele

3. Lehr- und Lernformen
Vorlesungen, integrierte Übungen

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 150 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Prüfungsleistung in Form einer Klausur (Dauer: 90 min) über den Lehrinhalt am Ende des Teilmoduls. Eine Wiederholungsmöglichkeit für die Prüfungsleistung besteht jeweils im Folgesemester.

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.
Empfohlen werden Kenntnisse des Moduls BK23 (Kommunikationsnetze).

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Winter- oder Sommersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul dient innerhalb des Studiengangs zur Unterstützung der Module „Kommunikationsnetze“ und „Optische Netze“. Ferner ist es in anderen Vertiefungsrichtungen im gleichen Studiengang auch als weiterführendes Modul im Bereich der Informations- und Kommunikationstechnik verwendbar.
BK29VL03 (Netzwerk-Design)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL03</td>
<td>Netzwerk-Design</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BK29VL)</td>
<td>s. Teilmodulname</td>
<td>2,5 CP</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Gerdes

1. Inhalte
- Planungsgrundlagen
- Netzkonzepte und Netzarchitektur
- Ausfallsicherheit von Netzen
- Wirtschaftliche Bewertung von Netzstrukturen
- Planung und Erweiterung von Netzen inkl. Migration
- Interoperabilität von Netzen und Protokoll-Transparenz

2. Ziele
Die Studierenden erwerben detaillierte Kenntnisse in der Planung und Optimierung von lokalen Netzen (LAN) und Netzen im MAN und WAN-Bereich, die für den Datenaustausch basierend auf Internet-Technologien notwendig sind.
Die Veranstaltung soll die Studierenden in die Lage versetzen, technologische wie auch wirtschaftliche Aspekte verschiedener Netzkonzepte zu untersuchen und konkrete Netzstrukturen zu planen, die hinsichtlich Leistungsanforderungen und Kosten optimiert sind.

3. Lehr- und Lernformen
Vorlesungen, integrierte Übungen und computergestützte Simulationen

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Prüfungsleistung in Form einer Klausur [Dauer: 90 min] über den Lehrinhalt am Ende des Teilmoduls.
Eine Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester.

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.
Empfohlen werden ausreichende Kenntnisse der Module BK23 (Kommunikationsnetze) sowie aus dem Bereich der Optischen Nachrichtentechnik.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Wintersemester oder Sommersemester angeboten.
Lehrveranstaltung „Netzwerk-Design“: 2 SWS Vorlesung.

8. Verwendbarkeit des Moduls
Das Modul dient innerhalb des Studiengangs zur Erweiterung des Moduls „Kommunikationsnetze“.
Ferner ist es in anderen Vertiefungsrichtungen im gleichen Studiengang auch als weiterführendes Modul im Bereich der Kommunikationsnetze verwendbar.
BK29VL04 (Netzsicherheit und Netzmanagement)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL04</td>
<td>Netzsicherheit und Netzmanagement</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BK29VL)</td>
<td>s. Teilmodulname</td>
<td>2,5 CP 2 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r): weitere Lehrende
Chen Gerdes

1. Inhalte
 - Rahmenbedingungen, Gefahr- und Risikoanalyse
 - Wichtige Aspekte der Netzsicherheit, Sicherheitslücken
 - Perimeter-Schutz, Physikalische Sicherheit
 - Grundlagen der Kryptographie und Verschlüsselungsverfahren
 - Typen von Angriffen auf Netze und Anwendungen
 - Abwehr von Angriffen, Methoden zur Gewährleistung der Netzsicherheit
 - Virtual Private Network VPN
 - QoS (Quality of Service)- und Sicherheitsaspekte bei VoIP-Anwendungen
 - Prinzip der Netzmanagementsysteme (NMS) anhand der xDSL-Netze
 - Sicherheit mobiler Netze (GSM/GPRS, UMTS, WLAN etc.)

2. Ziele

3. Lehr- und Lernformen
 Vorlesungen, integrierte Übungen und computergestützte Simulationen

4. Leistungspunkte und Arbeitsaufwand
 5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Prüfungsleistung in Form einer Klausur (Dauer: 90 min) über den Lehrinhalt des Moduls am Ende des Semesters.
 Eine Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Zusammenhang mit der Prüfung des Folgesemesters.

6. Voraussetzungen
 Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein. Weiterhin sind Kenntnisse aus dem Modul BK23 (Kommunikationsnetze) erforderlich.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester und wird im Sommer- und Wintersemester angeboten. Lehrveranstaltung „Netzsicherheit und Netzmanagement“: 4 SWS Vorlesung.

8. Verwendbarkeit des Moduls
BK29VL05 (Ausgewählte Kapitel der optischen Nachrichtenübertragung)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL05</td>
<td>Ausgewählte Kapitel der optischen Nachrichtenübertragung</td>
<td>Wahlpflicht</td>
<td>s. Teilmodulname, Vorlesung</td>
<td>2,5 CP</td>
<td>2 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r) weitere Lehrende
Loch Chen

1. Inhalte
- Komponenten moderner optischer Übertragungssysteme und –netze,
- Nichtlineare Anwendungen in der Optischen Nachrichtenübertragung,
- Besondere Verfahren der Messtechnik in der optischen Übertragungstechnik.

2. Ziele

3. Lehr- und Lernformen
Seminaristische Vorlesung.

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Prüfungsleistung in Form einer Klausur (Dauer: 90 min) bzw. eines Referates.
Wiederholungsmöglichkeit für die Prüfungsleistung besteht jeweils im Folgesemester.

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.
Empfohlen werden ausreichende Kenntnisse aus den Modulen BK16 (Grundlagen der Nachrichtentechnik) und BK25 (Optische Netze).

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul vermittelt weiterführendes Spezialwissen auf dem Gebiet der Nachrichtenübertragung.
BK29VL06 [Simulationsverfahren in der Hochfrequenz- und Mikrowellentechnik]

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK26VL06</td>
<td>Simulationsverfahren in der Hochfrequenz- und Mikrowellentechnik</td>
<td>Wahlpflicht</td>
<td>Teilmodulname</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td>aus Wahlpflichtkatalog</td>
<td></td>
<td></td>
<td>2 VU</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r)
weitere Lehrende
Schmiedel
Gaspard

1. Inhalte
 Simulationstools:
 - Lineare Mikrowellenschaltungen
 - Nichtlineare Mikrowellenschaltungen
 - Feldberechnung (2D und 3D)
 - Antennen (Stromverteilung, Impedanz und Richtdiagramm)

2. Ziele

3. Lehr- und Lernformen
 Seminaristische Veranstaltung mit Simulationsübungen.

4. Leistungspunkte und Arbeitsaufwand
 2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform und Prüfungsdauer
 Prüfungsaufgabe in Form eines Referats plus einer Klausur (Dauer: 60 min).
 Die Gewichtung von Klausur und Präsentation wird zum Beginn der Veranstaltung bekanntgegeben.

6. Voraussetzungen
 Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein. Empfohlen werden ausreichende Kenntnisse der Hochfrequenz- und Mikrowellentechnik, Modul BK27.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Wahlmodul erstreckt sich über ein Semester und liegt typischerweise im 6. Semester.

8. Verwendbarkeit des Moduls
 Das Modul ist Bestandteil der Vertiefung Kommunikationstechnologie.
BK29VL07 (Satellite Communications)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL07</td>
<td>Satellite Communications</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BK29VL)</td>
<td>s. Teilmodulname 2,5 CP</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 V</td>
<td></td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Schmiedel Chen

1. Inhalte
- Satellite orbits
- Attitude control
- Carrier rockets
- Communications payload
- Radio link, g/T, FEC
- Access technology
- Earth-station technology
- Satellite services- and applications

2. Ziele

3. Lehr- und Lernformen
Seminaristische Veranstaltung in englischer Sprache.

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform und Prüfungsdauer
Prüfungsleistung in Form eines Referats in englischer Sprache plus einer Klausur (Dauer: 60 min). Die Gewichtung von Klausur und Präsentation wird zum Beginn der Veranstaltung bekanntgegeben.

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollten abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Wahlmodul erstreckt sich über ein Semester und liegt im 4. oder 6. Semester.

8. Verwendbarkeit des Moduls
Das Modul ist Bestandteil der Vertiefung Kommunikationstechnologie, kann aber auch wegen der geringen Voraussetzungen für andere Vertiefungen verwendet werden.
BK29VL08 (Ausgewählte Kapitel der drahtlosen Kommunikation)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL08</td>
<td>Ausgewählte Kapitel der</td>
<td>Wahlpflicht</td>
<td>Ausgewählte Kapitel der</td>
<td>2.5 CP</td>
</tr>
<tr>
<td></td>
<td>drahtlosen Kommunikation</td>
<td>(Teilmodul aus</td>
<td>drahtlosen Kommunikation</td>
<td>2 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wahlpflichtkatalog</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BK29VL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Kuhn

1. Inhalte
 - Modulation/Demodulation
 - Kanäle und Kanalmodellierung
 - Parameterschätzung
 - Adaptive Filterung
 - Intersymbol-Interferenz und Kompensationsmethoden
 - Adaptive Antennen und MIMO-Systeme
 - Kanalzugriffsverfahren
 - Dienstgüte

2. Ziele
 - Einüben der Arbeit mit der Fachliteratur und sonstigen Informationsquellen
 - Erlernen und Einüben von Präsentations- und Diskussionstechniken.

3. Lehr- und Lernformen
 Seminar.

4. Leistungspunkte und Arbeitsaufwand
 2.5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsduer und Prüfungsvoraussetzung
 Prüfungsleistung in Form einer Präsentation.
 Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester.

6. Voraussetzungen
 Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester und wird im Sommer- und/oder Wintersemester angeboten.

8. Verwendbarkeit des Moduls
 Das Modul dient als Vorbereitung für das Praxisprojekt und die Bachelor-Arbeit.
BK29VL09 (Simulation und Realisierung von Kommunikationssystemen)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL09</td>
<td>Simulation und Realisierung von Kommunikationssystemen</td>
<td>Wahlpflicht [Teilmodul aus Wahlpflichtkatalog BK29VL]</td>
<td>Simulation und Realisierung von Kommunikationssystemen</td>
<td>2.5 CP 2 P</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Kuhn

1. Inhalte
- Simulation von Kommunikationssystemen und deren Komponenten in Matlab und VHDL
- Design von Kommunikationssystemen
- Realisierung in Hard- und Software
- Aufbau und Inbetriebnahme von Kommunikationssystemen

2. Ziele

3. Lehr- und Lernformen
Projekt: Erarbeitung von Konzepten sowie Realisierung von Lösungen komplexer, praxisnaher Aufgabenstellungen im Team.

4. Leistungspunkte und Arbeitsaufwand
2.5 CP, 75 Stunden

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Prüfungsleistung in Form einer Dokumentation und eines Fachgesprächs mit Präsentation der Ergebnisse.

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Sommer- und/oder Wintersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul dient als Vorbereitung für das Praxisprojekt und die Bachelor-Arbeit.
BK29VL10 (Mobilfunkkanäle)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL10</td>
<td>Mobilfunkkanäle</td>
<td>Wahlpflicht [Teilmodul aus Wahlpflichtkatalog BK29VL]</td>
<td>s. Teilmodulname</td>
<td>2,5 CP 2 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Gaspard

1. Inhalte
- Ausbreitungsmechanismen
- Statistische Beschreibung von Mobilfunkkanälen
- Charakterisierung breitbandiger und richtungsabhängiger Mobilfunkkanäle, MIMO-Kanäle
- Systemtheoretische Beschreibung zeitvarianter Funkkanäle
- Kanalmodelle und -simulation bzw. - emulation
- Funkkanalmessung
- Feldstärke- und Versorgungsprognose
- Funkkanalbeschreibung als Planungsgrundlage aktueller terrestrischer Funksysteme [WLAN, LTE, DAB, DVB-T, UWB]

2. Ziele
Die Studierenden erwerben Kenntnisse im Bereich der Beschreibung, Modellierung und Messung von (Mobil-)Funkkanälen aktueller Rindfunk- und Mobilfunksysteme. Ferner werden die Grundlagen zur Versorgungsplanung aktueller zellulärer Funknetze vermittelt.

3. Lehr- und Lernformen
Seminaristische Vorlesung mit integrierten Übungen und studentischen Präsentationen.

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Prüfungsleistung in Form einer Präsentation und einer Klausur (Dauer: 60 min) über den Lehrinhalt des Moduls am Ende des Semesters. Die Gewichtung von Klausur und Präsentation wird zum Beginn der Veranstaltung bekanntgegeben.
Eine Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Zusammenhang mit der Prüfung des Folgesemesters.

6. Voraussetzungen
Es werden Kenntnisse aus dem Modul BK24 [Hochfrequenz- und Mikrowellentechnik] empfohlen.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Sommer- oder Wintersemester angeboten.
Lehrveranstaltung „Mobilfunkkanäle“: 2 SWS Vorlesung.

8. Verwendbarkeit des Moduls
Das Modul vermittelt weiterführendes Spezialwissen auf dem Gebiet der Mobilfunktechnik und dient als Vorbereitung für das Praxisprojekt und die Bachelor-Arbeit.
BK29VL11 (Ausgewählte Kapitel der Signalverarbeitung)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL11</td>
<td>Ausgewählte Kapitel der digitalen Signalverarbeitung</td>
<td>Wahlpflicht [Teilmodul aus Wahlpflichtkatalog BK29VL]</td>
<td>s. Teilmodulname</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche(r)
- weitere Lehrende
- Schultheiß Krauß

1. Inhalte

Vertiefende Themen aus dem Gebiet der digitalen Signalverarbeitung wie z. B.
- Adaptive Filter
- Optimalfilter
- Multiraten-Systeme
- Spezielle Orthogonal-Transformationen
- Klassifikationsverfahren

2. Ziele

Die Studierenden sollen vertiefende Kenntnisse auf speziellen Gebieten der digitalen Signalverarbeitung erwerben. Diese Kenntnisse sollen an praktischen Beispielen vertieft werden.

3. Lehr- und Lernformen

Seminaristische Vorlesung.

4. Leistungspunkte und Arbeitsaufwand

2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsleistung in Form einer Klausur (Dauer: 90 min), einer mündlichen Prüfung (max. 45 min) oder einer Hausarbeit je nach Teilnehmeranzahl und Absprache.

Eine Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester.

6. Voraussetzungen

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Das Modul erstreckt sich über ein Semester und im Sommersemester angeboten.

8. Verwendbarkeit des Moduls

Das Modul vermittelt weiterführendes Spezialwissen auf dem Gebiet der digitalen Signalverarbeitung und kann als Vorbereitung für das BPP und die Bachelor-Arbeit dienen.
BK29VL12 (Mobile ad-hoc Netzwerke)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL12</td>
<td>Mobile ad-hoc Netzwerke</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BK29VL)</td>
<td>Mobile ad-hoc Netzwerke</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 S</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r]
- weitere Lehrende
- Kuhn Gaspar

1. **Inhalte**
 - Mobile Ad-hoc Netzwerke (MANET)
 - Wireless Sensor Networks
 - Cognitive Networks
 - Car-to-Car-Kommunikation
 - Car-to-Infrastructure-Kommunikation

2. **Ziele**

3. **Lehr- und Lernformen**
 - Seminar.

4. **Leistungspunkte und Arbeitsaufwand**
 - 2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**
 - Prüfungsleistung in Form einer Präsentation.
 - Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester.

6. **Voraussetzungen**
 - Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**
 - Das Modul erstreckt sich über ein Semester und wird im Sommer- und/oder Wintersemester angeboten.

8. **Verwendbarkeit des Moduls**
 - Das Modul dient als Vorbereitung für das Praxisprojekt und die Bachelor-Arbeit.
BK29VL13 (Radartechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL13</td>
<td>Radartechnik</td>
<td>Wahlpflicht</td>
<td>[Teilmodul aus Wahlpflichtkatalog BK29VL]</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Teilmodulname]</td>
<td></td>
<td>2 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weite Lehrende
Gaspard Schmiedel

1. Inhalte
 - Einleitung, Historie
 - Grundlagen der Radartechnik: Zielgrößen, Radargleichung, mono-, bi- und multistatisches Radar, CW- und FM-Radar, SAR, Frequenzbereiche
 - Falschalarm- und Entdeckungswahrscheinlichkeit, Matched-Filter Empfang, Ambiguity-Function
 - Komponenten: Antennen, Sender, Empfänger

2. Ziele
 Die Studierenden erwerben Kenntnisse im Bereich der Radartechnik anhand verschiedener aktueller Systeme. Ferner werden die Grundlagen zur Radartechnik vermittelt, so dass Leistungsfähigkeit und Grenzen moderner Radarsysteme eingeschätzt werden können.

3. Lehr- und Lernformen
 Seminaristische Vorlesung mit integrierten Übungen und studentischen Präsentationen.

4. Leistungspunkte und Arbeitsaufwand
 2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
 Prüfungsleistung in Form einer Präsentation und einer Klausur (Dauer: 60 min) über den Lehrinhalt des Moduls am Ende des Semesters. Die Gewichtung von Klausur und Präsentation wird zum Beginn der Veranstaltung bekanntgegeben.
 Eine Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Zusammenhang mit der Prüfung des Folgesemesters.

6. Voraussetzungen
 Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein.
 Es werden Kenntnisse aus dem Modul BK24 (Hochfrequenz- und Mikrowellentechnik) empfohlen.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
 Das Modul erstreckt sich über ein Semester und wird im Sommer- oder Wintersemester angeboten.
 Lehrveranstaltung „Radartechnik“: 2 SWS Vorlesung.

8. Verwendbarkeit des Moduls
 Das Modul vermittelt weiterführendes Spezialwissen auf dem Gebiet der Radartechnik und dient als Vorbereitung für das Praxisprojekt und die Bachelor-Arbeit.
BK29VL14 (Labor Optische Nachrichtenübertragung / Photonische Netze)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL14</td>
<td>Labor Optische Nachrichtenübertragung / Photonische Netze</td>
<td>Wahlpflicht [Teilmodul aus Wahlpflichtkatalog BK29VL]</td>
<td>s. Teilmodulname, Labor</td>
<td>2,5 CP 2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r]

weitere Lehrende

Loch

1. **Inhalte**

 - Praktische Versuche aus dem Bereich der Optischen Nachrichtenübertragung (z.B. Charakterisierung von optischen Quellen, Dämpfungsmessung und Polarisation auf LWL-Systemen)
 - Arbeiten mit Simulationssoftware zur Optischen Nachrichtenübertragung und zu Photonischen Netze

2. **Ziele**

3. **Lehr- und Lernformen**

 Labor.

4. **Leistungspunkte und Arbeitsaufwand**

 2,5 CP. 75 Stunden insgesamt davon ca. 30 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**

 Prüfungsleistung in Form von Präsentationen zu den einzelnen Versuchsthemen. Eine Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester.

6. **Voraussetzungen**

 Die Module B01 (Mathematik), B06 (Physik), B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein. Empfohlen werden ausreichende Kenntnisse des Moduls BK16 (Grundlagen der Nachrichtentechnik) und des Moduls BK25 (Optische Netze).

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**

 Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.

8. **Verwendbarkeit des Moduls**

 Das Modul ergänzt u.a. die Module BK16 (Grundlagen der Nachrichtentechnik) und BK25 (Optische Netze) in idealer Weise um praktische und vertiefende Aspekte und dient als Vorbereitung für die Praxisprojekte und die Bachelor-Arbeit.
BK29VL15 (Labor Mikrowellentechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL15</td>
<td>Labor Mikrowellentechnik</td>
<td>Wahlpflicht</td>
<td>Siehe Teilmodulname</td>
<td>2,5 CP 2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r]
- weitere Lehrende
- Schmiedel
 - Gaspard

1. Inhalte
- Mikrowellenmesstechnik
 - Hohlleitermessleitung
 - Komplexe Netzwerkanalyse
 - Rauschmessungen
 - Gunnoszillator
 - Schottkydetektor und -mischer
 - Antennenrichtdiagramme

2. Ziele
Die Studierenden sollen ihre erworbenen theoretischen Kenntnisse und Verfahren auf praktische Laborexperimente anwenden. Die Studierenden sollen den praktischen Umgang mit komplexen Messgeräten lernen.

3. Lehr- und Lernformen
Labor mit Vor- und Nachbereitung.

4. Leistungspunkte und Arbeitsaufwand
2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

6. Voraussetzungen
Die Module B01 [Mathematik], B06 [Physik], B03 [Grundlagen der Elektrotechnik] sollen abgeschlossen sein.
Empfohlen werden ausreichende Kenntnisse der Module BK16 [Grundlagen der Nachrichtentechnik], BK17 [Übertragungstechnik] und BK27 [Hochfrequenz- und Mikrowellentechnik].

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird in der Regel im Sommersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul vermittelt praktische Kenntnisse und Fähigkeiten auf dem Gebiet der Hochfrequenz- und Mikrowellentechnik und dient als Vorbereitung für die Praxisprojekte und die Bachelor-Arbeit.
BK29VL16 (Labor Kommunikationsnetze)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL16</td>
<td>Labor Kommunikationsnetze</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BK29VL)</td>
<td>s. Teilmodulname</td>
<td>2,5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r] weitere Lehrende
Gerdes Chen

1. Inhalte
- Laborversuche zu Netzkonfigurationen für Unternehmensnetze (Routing, VoIP, Firewall, EAPS, Virtualisierung, VPN, Security)

2. Ziele

3. Lehr- und Lernformen
Labor mit praktischen Versuchen und Ausarbeitungen

4. Leistungspunkte und Arbeitsaufwand
5 CP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

6. Voraussetzungen
Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) sollen abgeschlossen sein. Empfohlen werden Kenntnisse des Moduls BK23 (Kommunikationsnetze) bzw. BK29VL02 (Internet-Kommunikation)

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Das Modul erstreckt sich über ein Semester und wird im Winter- oder Sommersemester angeboten.

8. Verwendbarkeit des Moduls
Das Modul dient innerhalb des Studiengangs zur Unterstützung der Module „Kommunikationsnetze“ und „Optische Netze“. Ferner ist es in anderen Vertiefungsrichtungen im gleichen Studiengang auch als weiterführendes Modul im Bereich der Informations- und Kommunikationstechnik verwendbar.
BK29VL17 (Labor Nachrichtenverarbeitung und Multimediatechnik)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL17</td>
<td>Labor Nachrichtenverarbeitung und Multimediatechnik</td>
<td>Wahlpflicht (Teilmodul aus Wahlpflichtkatalog BK29VL)</td>
<td>s. Teilmodulname</td>
<td>2,5 CP 2 L</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r]
Weitere Lehrende

| Wirth | Götte, Krauß, Schultheiß |

1. **Inhalte**
 - Praktische Versuche aus dem Bereich der Nachrichtenverarbeitung (z.B. Basisbanddatenverarbeitung, Schmalband- und Breitbandverbindungen)
 - Praktische Versuche aus dem Bereich der Multimediatechnik (z.B. Audio-Messplatz und Bildverarbeitung)

2. **Ziele**
 Die Studierenden sollen durch praktische Versuche vertiefende Kenntnisse auf speziellen Gebieten der Nachrichtenverarbeitung und Multimediatechnik erwerben.

3. **Lehr- und Lernformen**
 Labor

4. **Leistungspunkte und Arbeitsaufwand**
 2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**
 1. Erfolgreiche Teilnahme, testierte Laborberichte (unbenotet).
 2. Prüfungsleistung nach Absprache und Teilnehmeranzahl entweder in Form eines praktischen Tests, eines Fachgesprächs, einer Klausur oder einer Präsentation bzw. als (teilweise) Kombination der genannten Formen (benotet).
 Eine Wiederholungsmöglichkeit für die Prüfungsleistung besteht im Folgesemester.

6. **Voraussetzungen**

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**
 Das Modul erstreckt sich über ein Semester und wird im Sommersemester angeboten.

8. **Verwendbarkeit des Moduls**
 Das Modul ergänzt u. a. die Module BK18 (Signalverarbeitung 1), BK19 (Signalverarbeitung 2) und BK22 (Multimediatechnik) um praktische und vertiefende Aspekte. Ferner kann es als Vorbereitung für das BPP und die Bachelor-Arbeit dienen.
BK29VL18 (Sprachverarbeitung)

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Teilmodul</th>
<th>Art</th>
<th>Lehrveranstaltungen</th>
<th>Sem. 4 o. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK29VL18</td>
<td>Sprachverarbeitung</td>
<td>Wahlpflicht [Teilmodul aus Wahlpflichtkatalog BK29VL]</td>
<td>s. Teilmodulname</td>
<td>2,5 CP 2 V</td>
</tr>
</tbody>
</table>

Modulverantwortliche[r]
Wirth

1. **Inhalte**
 - Menschliche Sprachwahrnehmung und Sprachproduktion
 - Algorithmen der Sprachsignalanalyse
 - Algorithmen der Sprachwiedergabe und der Sprachsynthese

2. **Ziele**
 Die Studierenden sollen ihre Kenntnisse auf dem Gebiet der digitalen Signalverarbeitung anhand spezieller Algorithmen der Sprachsignalverarbeitung vertiefen und erweitern. Diese Kenntnisse sollen mit Hilfe praktischer Übungen (z.B. Simulationen, Hörversuche, etc.) gefestigt werden.

3. **Lehr- und Lernformen**
 seminaristische Vorlesung mit integrierten Übungen

4. **Leistungspunkte und Arbeitsaufwand**
 2,5 CP, 75 Stunden insgesamt davon 30 Stunden Präsenzveranstaltungen.

5. **Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung**
 Prüfungsleistung in Form einer Klausur (Dauer: 90 min). Je nach Teilnehmerzahl und Absprache kann die Prüfungsleistung auch in Form einer mündlichen Prüfung (max. 45 min) oder einer Hausarbeit abgelegt werden.
 Eine Wiederholungsmöglichkeit für die Prüfungsleistung besteht jeweils zu Beginn des Folgesemesters.

6. **Voraussetzungen**
 Die Module B01 (Mathematik), B06 (Physik) und B03 (Grundlagen der Elektrotechnik) müssen abgeschlossen sein.
 Empfohlen werden Kenntnisse aus den Modulen B12 (Simulation technischer Systeme) sowie BK18 und BK19 (Signalverarbeitung).

7. **Dauer, zeitliche Gliederung und Häufigkeit des Angebots**
 Das Modul erstreckt sich über ein Semester und wird im Sommer- oder Wintersemester angeboten.
 Lehrveranstaltung "Sprachverarbeitung": 2SWS

8. **Verwendbarkeit des Moduls**
 Das Modul vertieft und erweitert Wissen im Bereich der digitalen Signalverarbeitung und ihrer Anwendungen. Es kann als Vorbereitung für die Praxisprojekte und die Bachelor-Arbeit dienen.