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In our previous article “Machine Learning in Smart Grid Applications”, we discussed how machine 
learning can support smart grid applications, providing an introduction to Artificial Intelligence (AI), 
classical machine learning and deep learning. We looked at the current and most promising 
applications of these technologies and we discussed the results of an energy forecast use case. 
 

This article provides further insights on the same use case, presenting the architectural decisions, the 
analysis process and some additional information on feature engineering and model evaluation used 
in the study. 

 

 

1 Introduction 
 

About ten years back, the UK government wanted energy providers to install smart meters in every 
home in England, Wales and Scotland. There were more than 26 million homes, with the goal of every 
home having a smart meter by last year (2020). 

The dataset we used in this analysis is a refactored version of the data from the London data store, 
which contains the energy consumption readings for about two years for a sample of 5,567 London 
Households that took part in the UK Power Networks led Low Carbon London project.   

The choice of the best machine learning algorithm is not always obvious. Sometime the use of classical 
simple machine learning models is just fine and there is no need to increase complexity and 
computational costs. However, there are challenging situations, where to achieve the desired accuracy, 
is necessary to use more complex models. 

Classical machine learning and deep-learning models have been defined with the aim to compare their 
performance on the prediction of daily energy consumption and to achieve an energy forecast with a 
mean absolute percentage error below 2%.  

 

1.1 ML Algorithms 
Initially, a simple linear regression algorithm is tested on datasets with different features. A first dataset 
is featured only with environmental data, such as min. and max temperature, dew point, air pressure, 
humidity, visibility, UV index, wind speed, daily light duration, and distinction between working and 
non-working days, while the second dataset has additional features related to the energy data 
statistics of the previous day, week and month, collected by the smart meters.  

The analysis assessed the influence of the feature (input data) selection on the linear regression model. 
Hence, the features having better performance with the linear regression are further tested with 
Gradient-Boosted Trees and Random Forest Regression. Finally, a deep learning algorithm has been 
implemented to compare the performance of deep learning and non-deep learning algorithms in this 
use case. 
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As a summary, following algorithms have been tested: 

 Non-deep learning algorithms (classical machine learning): 
o linear regression with only initial features 
o linear regression with additional features 
o Gradient-Boosted Trees (GBT) Regression (for the dataset with additional features) 
o Random Forest Regression (for the dataset with additional features only) 

 Deep-learning algorithms: 
o LTMS (for the dataset with additional features only) 

 

1.2 ML Architecture 
The results of the best performing model have been compared for discussion with a base case of naïve 
prediction, which simply assumes the energy consumed in a specific day is equal to the energy 
consumed the day before. 

The analysis has been split into several sequential tasks, which is common for machine learning: 

 Initial Data Exploration  
 Extract Transform Load 
 Feature Engineering 
 Model Definition 
 Model Training 
 Model Evaluation 

 

For a better computational performance, we explored the deployment of the models in a cloud system 
(IBM cloud system, through Watson Studio execution environment with Python 3.7 and Spark 3.0). 
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Figure 1 – ML Architecture 

 

1.3 Metrics 
The model during training and test has been evaluated by means of R squared metrics, which can be 
seen as an index showing how well the model fit the data. The R squared move from 0 to 1. Generally, 
a higher r-squared indicates a better fit for the model. 

 

1.4 Results 
The findings of the study in terms of model performance are presented in Table 1 and Figure 2. The 
best performing models are those with a higher R squared, but also good balance between train and 
test set results. Models with high r-squared results on training data, but significantly lower 
performance on test data are overfitting, and they may need to pass through further optimization 
processes. 
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 Model R Square (Train data) R Square (Test data) 
0 Linear Regression (Basic Features) 0.850061 0.682555 
1 Linear Regression (Extra Features) 0.934283 0.918921 
2 Gradient Boosted Trees (Extra Features) 0.985304 0.884309 
3 Random Forest (Extra Features) 0.972449 0.920160 
4 Gradient Boosted Trees (Cross Validation) 0.985069 0.910467 
5 LSTM 0.977853 0.962497 

Table 1 - Comparison of model performance by using R squared metrics (table format). 

 

 
Figure 2 – Comparison of model performance by using R squared metrics (diagram format). 

Let’s discuss the results of Figure 2. As expected, a good feature selection is very important in classical 
machine learning. The performance of the model with basic features (only weather data) is quite poor 
and largely overfitting (first couple of bars – blue/orange – from the left). The addition of extra 
features, such as statistics of energy consumed on previous day, previous week and previous month, 
appear to be a good choice. With this additional features, simple linear regression provides a r-
squared of about 0.934 on train data and 0.918 on test data.   

By using the same extra features, two other classical machine learning models have been defined, 
trained, and evaluated: Gradient Boosted Trees and Random Forest. 

Gradient boosted trees scored the highest r-squared on the train data (0.985) but performed quite 
poorly (0.884) on the test data. Again, the model is overfitting. This time, a technique called cross 
validation has been used to tune the hyperparameters of the model trying to avoid overfitting. The 
results of cross validation show an improvement of the r-squared in the test data (0.910), without a 
significant reduction of performance on the train data. However, the score on test data is still below 
the random forest, which seems to be the best performing classical machine learning model on the 
test data. 

Finally, a deep learning model has been implemented to compare the results with classical machine 
learning models. The well-known Long-Short-Term-Memory (LSTM) recurrent neural network has been 
used, which is particularly suitable for prediction of time series data. This type of neural network can 
learn the order dependence between items in a sequence, which means that it can contextualize the 
data for a more accurate prediction. 
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The LSTM model had the highest R squared on the test dataset and the performance results on train 
and test data is very well balanced. 

The diagram of the predicted value, versus the true values of the test set is presented in Figure 3, for 
the classical machine learning (random forest) and deep learning (LSTM) models. 

 

 
 

 
Figure 3 – Prediction vs true values for random forest and LSTM models. The two diagrams may appear very similar, 
but with attention, we notice several different behaviors in the prediction. LSTM model was the one performing 
better. 

 

1.5 Further Model Assessment 
For the best performing model (LSTM), performance indexes, such as Mean Absolute Error, Mean 
Squared Error and Mean Absolute Percentage Error have been calculated and plotted in Figure 4. 
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Figure 4 – Performance of LSTM model compared to naïve prediction. A significant improvement is provided by 
LSTM, compared with naïve prediction, where energy consumption of a specific day is assumed to be equal to the day 
before. 

 

The LSTM largely outperforms a naïve forecast in all calculated performance indexes. In the case of 
mean squared error (MSE), the improvement is quite impressive, from about 0.213556 to 0.074922. 
This means that the implemented LSTM model limits large errors quite well, here penalized by the 
square of the MSE metric. 

Although the mean absolute percentage error is also significantly lower in the LSTM model (from 
about 3.3% to 1.9%), its improvement is less spectacular. This indicates that variations of energy 
consumption between two successive days is not very large. Yet, there are enough examples of larger 
variations to rise the MSE in the naïve forecast. This is where the LSTM brings its major contribution. 

Individual point in time with errors above 10% are present even in the LSTM model (see Figure 5). 

This reflects the basic principle that train and test data indeed have differences and that the features 
(smart meter readings and weather data) may not completely describe the observed variable (energy 
forecast). This does not preclude the usefulness of the model, which can effectively support the energy 
forecast and the correlated decisions in load and generation management. 

 



 

Page 8  |  Smart Grid LAB Hessen | Smart Grid AI: Energy Forecast with Machine Learning 

 
 

 
Figure 5 – Percentage Error of LSTM. The mean absolute error is about 1.9%. However, few sample exceptions present 
much higher errors (above 10%). 

 

1.6 Conclusions 
In this use case, we found quite significant improvements of the predictions by using deep learning 
algorithm, with a target mean absolute percentage error below 2%, even without a full optimization of 
the model. It is reasonable to assume that the gap between naïve forecast and deep learning model 
would be even higher in an electricity environment strongly influenced by renewables, electric vehicles, 
and other stochastic load and generation sources. 
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